Answer:
true
Explanation:
any object that is larger will take a longer time to do things, the same applies to heat levels. The lower the heat, the longer it takes, the higher the heat, the shorter it takes. So if an iceberg is large, it will need a higher heat, whereas an ice cube is really small and doesn't need that much heat to melt.
Answer:
192.9
Explanation:
From the question,
Ke = [HCL]²/[H₂][CL₂].......................... Equation 1
Where Ke = Equilibrium constant.
Given: [HCL] = 0.0625 M, [H₂] = 0.0045 M, [CL₂] = 0.0045 M
Substitute these values into equation 1
Ke = (0.0625)²/(0.0045)(0.0045)
ke = (3.90625×10⁻³)/(2.025×10⁻⁵)
ke = 1.929×10²
ke = 192.9
Hence the equilibrium constant of the system = 192.9
The identity of the metal is copper.
<h3>What is specific heat?</h3>
The amount of energy needed to raise the temperature of one gram of a substance by one degree Celsius.
Using the formula of specific heat
H = mcdT
Where, H = Heat absorbed
m = mass of the metal
c = specific heat capacity of the metal
dT = temperature change
Putting the values in the equation
20 J = 0.0052 Kg × c × ( 40.0°C - 30.0°C)
c = 20 J/0.0052 Kg × ( 40.0°C - 30.0°C)
c = 385 JKg-1°C-1
Thus, the metal is copper.
Learn more about specific heat
brainly.com/question/11297584
#SPJ4
Answer:
one-half
Explanation:
cuz for a first order reaction is a half life independent of concentration and constant over time
Answer:
thé answer is b ) electronegativity