Answer: 
Explanation: <u>Heats</u> <u>of</u> <u>formation</u> is the amount of heat necessary to create 1 mol of a compound from its molecular constituents. The basic conditions the substance is formed is at standard conditions: 1 atm and 25°C. Each compound has its own heat of formation per mol of compound (kJ/mol), but to an element is assigned a value of zero.
<u>Standard</u> <u>Enthalpy</u> <u>Change</u> is defined as the heat absorbed or released when a reaction takes place. It can be positive or negative, which means reaction is endothermic or exothermic, respectively.
Enthalpy change is calculated as the difference between the sum of heat formation of products and the sum of heat formation of the reactants:

For the reaction
2NH₃ + 3N₂O → 4N₂ + 3H₂O
2(-46.2) + 3(82.05) 4(0) + 3(-241.8)
![\Delta H^{0}=3(-241.8)-[ 2(-46.2)+3(82.05)]](https://tex.z-dn.net/?f=%5CDelta%20H%5E%7B0%7D%3D3%28-241.8%29-%5B%202%28-46.2%29%2B3%2882.05%29%5D)


<u>The standard enthalpy change for the reaction is </u>
<u> kJ</u>
This is equivalent to having a standard enthalpy change of reaction equal to 10.611 kJ
<u>Explanation</u>:
The standard enthalpy change of reaction, Δ
H
∘
, is given to you in kilojoules per mole, which means that it corresponds to the formation of one mole of carbon dioxide.
C
(s] + O
2(g]
→
CO
2(g]
Remember, a negative enthalpy change of reaction tells you that heat is being given off, i.e. the reaction is exothermic.
First to convert grams of carbon into moles,
use carbon's molar mass(12.011 g).
Moles of C = mass in gram / molar mass
= 0.327 g / 12.011 g
Moles of C = 0.027 moles
Now, in order to determine how much heat is released by burning of 0.027 moles of carbon to form carbon-dioxide.
= 0.027 moles C
393 kJ
Heat released = 10.611 kJ.
So, when 0.027 moles of carbon react with enough oxygen gas, the reaction will give off 10.611 kJ of heat.
This is equivalent to having a standard enthalpy change of reaction equal to 10.611 kJ
Answer:
Oil is extracted by three general methods: rendering, used with animal products and oleaginous fruits; mechanical pressing, for oil-bearing seeds and nuts; and extracting with volatile solvents, employed in large-scale operations for a more complete extraction than is possible with pressing.
Explanation:
<span>TAG: YOUR IT!!!!
It's pretty funny you opened this because......... over the next 4 days you will:
1. Have someone fall in love with you
2.Find a $20 on the ground
3.Go out with the person you like
4.Your best friend will get you a very nice gift
BUT first you have to fwd this! *Send to 10 ppl in the next 143 minutes. If you break the chain you'll have problems with:
-Relationships '
-your job/school your family for 5 years!!! ??
</span>
Answer:
32.1 g
Explanation:
Step 1: Write the balanced combustion reaction
C₄H₁₀ + 6.5 O₂ ⇒ 4 CO₂ + 5 H₂O
Step 2: Calculate the moles corresponding to 97.4 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
97.4 g × 1 mol/44.01 g = 2.21 mol
Step 3: Calculate the moles of butane that produced 2.21 moles of carbon dioxide
The molar ratio of C₄H₁₀ to CO₂ is 1:4. The moles of C₄H₁₀ required are 1/4 × 2.21 mol = 0.553 mol
Step 4: Calculate the mass corresponding to 0.553 moles of C₄H₁₀
The molar mass of C₄H₁₀ is 58.12 g/mol.
0.553 mol × 58.12 g/mol = 32.1 g