Answer:
The molar mass of the gas is 36.25 g/mol.
Explanation:
- To solve this problem, we can use the mathematical relation:
ν = 
Where, ν is the speed of light in a gas <em>(ν = 449 m/s)</em>,
R is the universal gas constant <em>(R = 8.314 J/mol.K)</em>,
T is the temperature of the gas in Kelvin <em>(T = 20 °C + 273 = 293 K)</em>,
M is the molar mass of the gas in <em>(Kg/mol)</em>.
ν = 
(449 m/s) = √ (3(8.314 J/mol.K) (293 K) / M,
<em>by squaring the two sides:</em>
(449 m/s)² = (3 (8.314 J/mol.K) (293 K)) / M,
∴ M = (3 (8.314 J/mol.K) (293 K) / (449 m/s)² = 7308.006 / 201601 = 0.03625 Kg/mol.
<em>∴ The molar mass of the gas is 36.25 g/mol.</em>
Answer:
²³⁸₉₃Np → Pu₉₄²³⁸ + ⁰₋₁e
Explanation:
²³⁸₉₃Np → Pu₉₄²³⁸ + ⁰₋₁e
Beta radiations:
Beta radiations are result from the beta decay in which electron is ejected. The neutron inside of the nucleus converted into the proton an thus emit the electron which is called β particle.
The mass of beta particle is smaller than the alpha particles.
They can travel in air in few meter distance.
These radiations can penetrate into the human skin.
The sheet of aluminium is used to block the beta radiation
⁴₆C → ¹⁴₇N + ⁰₋₁e
The beta radiations are emitted in this reaction. The one electron is ejected and neutron is converted into proton.
Two non metal combined together and form the bond is called covalent bond
Note - yellow color molecules in pictures are non metal elements
example - co2 , so2,
I would personally convert the 12 mg to g so I could see what I was working with. So 12 mg to grams is 0.012 g...
so 1 tablet is 0.012g. the patient needs 0.024 g.
so 0.024g/0.012g = 2 tablets or 0.012g X 2 is 0.024 g
hope this helps :)