1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
3 years ago
5

Find the measure of arc CE.

Mathematics
2 answers:
almond37 [142]3 years ago
7 0
∠CAE is is the central angle  ⇒  arc CE = ∠CAE
∠СAE =  ∠СAD + ∠DAE = 40° + 25° = 65°
So arc CE = 65°
kati45 [8]3 years ago
6 0
Arc CE = 40 + 25 = 65
answer
65
You might be interested in
On a feld trip, there are 8 aduits and 24 students. What is the ratio of students to the total number of people on the feld
DedPeter [7]

Answer: 32/24

Step-by-step explanation:

On a field trip, there are 8 adults and 24 students. What is the ratio of students to the total number of people on the field trip?

32 is the total amount of people on the field trip, 24 students

32/24 would be the correct ratio.

***If you found my answer helpful, please give me the brainliest, please give a nice rating, and the thanks ( heart icon :) ***

7 0
3 years ago
What is 0.11 in word and expanded form?
BARSIC [14]

Answer:

0+0.1+0.01/ zero and eleventh hundredths

<em>I hope this helped if I got it wrong i'm sorry it has been a while since I have done this XD</em>

8 0
4 years ago
6/5 B + g^2 = d <br> B = ?
Ber [7]
What kind of math is this
8 0
3 years ago
Lim n-&gt; infinity [1/3 + 1/3² + 1/3³ + . . . .+ 1/3ⁿ]​
Verizon [17]

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]

Let we first evaluate

\rm :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }

Its a Geometric progression with

\rm :\longmapsto\:a = \dfrac{1}{3}

\rm :\longmapsto\:r = \dfrac{1}{3}

\rm :\longmapsto\:n = n

So, Sum of n terms of GP series is

\rm :\longmapsto\:S_n = \dfrac{a(1 -  {r}^{n} )}{1 - r}

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]

\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Hence, </u>

\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Therefore, </u>

\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]} =  \frac{1}{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>Explore More</u></h3>

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

8 0
3 years ago
Diastolic blood pressures are assumed to follow a normal distribution with a mean of 85 and a standard deviation of 12. What pro
Bogdan [553]

Answer:

0.3745

Step-by-step explanation:

We have to solve the problem by calculating the z-score value that has the following formula:

z <(x - m) / sd

x is the value to evaluate (<80), m is the mean (85) and the standard deviation is sd (12)

replacing:

p (x <80) = z <(80 - 85) / 12

z <-0.416, we look for this value in the normal distribution table and it corresponds to:

p (x <80) = 0.3745

Which means that the proportion of people is 0.3745

7 0
3 years ago
Other questions:
  • 45 equals what sum of tens and ones
    8·1 answer
  • (p³-7p³-21p+4) ÷(p+2)
    6·1 answer
  • Which expression has a coefficient of 2??
    11·1 answer
  • Evaluate sin^-1(sin5)
    13·1 answer
  • Can someone please help me to understand this?
    6·1 answer
  • Beverly is 10 years old and he has collected 15 sea shells. Sharon is 8 years old and has collected 18 sea shells. Brad is Bever
    6·2 answers
  • Find the area of the shape
    7·1 answer
  • 24 times 20 no need to show work i just need an answer
    11·2 answers
  • Solve this please .......​
    15·1 answer
  • Areas and perimeters​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!