Answer: 32/24
Step-by-step explanation:
On a field trip, there are 8 adults and 24 students. What is the ratio of students to the total number of people on the field trip?
32 is the total amount of people on the field trip, 24 students
32/24 would be the correct ratio.
***If you found my answer helpful, please give me the brainliest, please give a nice rating, and the thanks ( heart icon :) ***
Answer:
0+0.1+0.01/ zero and eleventh hundredths
<em>I hope this helped if I got it wrong i'm sorry it has been a while since I have done this XD</em>
What kind of math is this
Answer:

Given expression is
![\rm :\longmapsto\:\displaystyle\lim_{n \to \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} } + \dfrac{1}{ {3}^{3} } + - - + \dfrac{1}{ {3}^{n} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3A%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%20%5Cinfty%20%7D%5Crm%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B2%7D%20%7D%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%2B%20%20-%20%20-%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%20%5Cbigg%5D)
Let we first evaluate

Its a Geometric progression with



So, Sum of n terms of GP series is

![\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 - {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3AS_n%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5B%5Cdfrac%7B1%20-%20%20%7B%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7Bn%7D%20%7D%7B1%20-%20%5Cdfrac%7B1%7D%7B3%7D%20%7D%20%5Cbigg%5D)
![\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 - {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3AS_n%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5B%5Cdfrac%7B1%20-%20%20%7B%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7Bn%7D%20%7D%7B%5Cdfrac%7B3%20-%201%7D%7B3%7D%20%7D%20%5Cbigg%5D)
![\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 - {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3AS_n%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5B%5Cdfrac%7B1%20-%20%20%7B%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7Bn%7D%20%7D%7B%5Cdfrac%7B2%7D%7B3%7D%20%7D%20%5Cbigg%5D)
![\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]](https://tex.z-dn.net/?f=%5Cbf%5Cimplies%20%5C%3AS_n%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D)
<u>Hence, </u>
![\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} } + \dfrac{1}{ {3}^{3} } + - - + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]](https://tex.z-dn.net/?f=%5Cbf%20%3A%5Clongmapsto%5C%3A%5Cdfrac%7B1%7D%7B3%7D%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B2%7D%20%7D%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%2B%20%20-%20%20-%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D)
<u>Therefore, </u>
![\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} } + \dfrac{1}{ {3}^{3} } + - - + \dfrac{1}{ {3}^{n} } \bigg]}](https://tex.z-dn.net/?f=%20%5Cpurple%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%20%5Cinfty%20%7D%5Crm%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B2%7D%20%7D%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%2B%20%20-%20%20-%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%20%5Cbigg%5D%7D)
![\rm \: = \: \displaystyle\lim_{n \to \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%20%5Cinfty%20%7D%5Crm%20%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D)
![\rm \: = \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Crm%20%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B1%20-%200%20%5Cbigg%5D)

<u>Hence, </u>
![\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} } + \dfrac{1}{ {3}^{3} } + - - + \dfrac{1}{ {3}^{n} } \bigg]} = \frac{1}{2}}}](https://tex.z-dn.net/?f=%20%5Cpurple%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cboxed%7B%5Ctt%7B%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%20%5Cinfty%20%7D%5Crm%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B3%7D%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B2%7D%20%7D%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%2B%20%20-%20%20-%20%20%2B%20%5Cdfrac%7B1%7D%7B%20%7B3%7D%5E%7Bn%7D%20%7D%20%20%5Cbigg%5D%7D%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%7D%7D)
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
<h3>
<u>Explore More</u></h3>





Answer:
0.3745
Step-by-step explanation:
We have to solve the problem by calculating the z-score value that has the following formula:
z <(x - m) / sd
x is the value to evaluate (<80), m is the mean (85) and the standard deviation is sd (12)
replacing:
p (x <80) = z <(80 - 85) / 12
z <-0.416, we look for this value in the normal distribution table and it corresponds to:
p (x <80) = 0.3745
Which means that the proportion of people is 0.3745