Answer:
0.5cm
Step-by-step explanation:
Using the sine rule
Answer:
the numerical value of the correlation between percent of classes attended and grade index is r = 0.4
Step-by-step explanation:
Given the data in the question;
we know that;
the coefficient of determination is r²
while the correlation coefficient is defined as r = √(r²)
The coefficient of determination tells us the percentage of the variation in y by the corresponding variation in x.
Now, given that class attendance explained 16% of the variation in grade index among the students.
so
coefficient of determination is r² = 16%
The correlation coefficient between percent of classes attended and grade index will be;
r = √(r²)
r = √( 16% )
r = √( 0.16 )
r = 0.4
Therefore, the numerical value of the correlation between percent of classes attended and grade index is r = 0.4
Answer:
B, between 1 and 3 seconds.
Step-by-step explanation:
This is because the line is horizontal, and no changes were made, meaning she stopped walking.
Hope this helped.
The rate of change is the same as the slope.
Let's find the slope of function 1 using the Rise Over Run rule.
The rise is 2 and run is 1. So your rate of change is 2/1 or 2 for function 1
Function 2 is a y = mx + b equation, the slope is usually "m" or before the x
y = 1/2x + 7
1/2 is your rate of change for function 2
Answer:
26 cm²
Step-by-step explanation:
The area of the rectangle whose dimensions are shown at the right and bottom is ...
(6 cm)(7 cm) = 42 cm²
The figure is smaller than that by the area of the space whose dimensions are shown at the right and in the middle left:
(4 cm)(4 cm) = 16 cm²
The figure area is then the difference ...
42 cm² - 16 cm² = 26 cm²
_____
<em>Alternate solution</em>
Draw a diagonal line between the lower right inside corner and the lower right outside corner. This divides the figure into two trapezoids.
The trapezoid at lower left has bases 7 and 4 cm, and height 6-4 = 2 cm. Its area is ...
A = (1/2)(b1 +b2)h = (1/2)(7 + 4)(2) = 11 . . . . cm²
The trapezoid at upper right has bases 6 cm and 4 cm and height 3 cm. Its area is ...
A = (1/2)(b1 +b2)h = (1/2)(6 + 4)(3) = 15 . . . . cm²
Then the area of the figure is the sum of the areas of these trapezoids, so is ...
11 cm² + 15 cm² = 26 cm²
_____
<em>Comment on other alternate solutions</em>
There are many other ways you can find the area of this figure. It can be divided into rectangles, triangles, or other figures of your choice. The appropriate area formulas should be used, and the resulting partial areas added or subtracted as required.
You can also let a geometry program find the area for you. (It is 26 cm².)