By equation of motion we have v = u + at
Where u = Initial velocity, v = final velocity, t = time taken and a = acceleration
Here v = 141 m/s, u = 17.7 m/s and t = 6 s
On substitution we will get
141 = 17.7+ 6a
So, a = (141-17.7)/6 = 20. 55 m/
Aceeleration = 20. 55 m/
along north direction.
Answer
given,
angle between two polarizing filters = 45°
filter reduce intensity = ?
a) I = I₀ Cos² θ
here θ = 45⁰
intensity of the light is reduced by 0.500
correct answer from the given option D
b) direction of the polarization
θ = 45°
Answer:
1.38 x 10^-18 J
Explanation:
q = - 1.6 x 10^-19 C
d = 5 x 10^-10 m
the potential energy of the system gives the value of work done
The formula for the potential energy is given by

So, the total potential energy of teh system is

As all the charges are same and the distance between the two charges is same so the total potential energy becomes

K = 9 x 10^9 Nm^2/C^2
By substituting the values

U = 1.38 x 10^-18 J
Answer:
The pressure exerted by the girl is 245,000 N/m²
Explanation:
Given;
mass of the girl, m = 50 kg
area of the girl's shoe, A = 0.002 m²
The pressure exerted by the girl is calculated as follows;

Therefore, the pressure exerted by the girl is 245,000 N/m²