Answer:
Explanation:
This question is based on the Law of Conservation of Angular Momentum.
Angular momentum (L) equals the moment of inertia (I) times the angular speed (ω).
L = Iω
If momentum is conserved,
I₁ω₁ = I₂ω₂
Data:
I₁ = 3.5 kg·m²s⁻¹
ω₁ = 6.0 rev·s⁻¹
I₂ = 0.70 kg·m²s⁻¹
Calculation:

Closer than the outer planets, inside the Asteroid Belt between Mars and Jupiter.
Well a basic explanation is that some elements have enough electrons to be considered stable. These elements do not need to react with other elements to gain more electrons. Reactive elements are no where near stable; they respond with other elements in order to become stable. The more unstable, the harsher the reaction is.
The heat from the wick melts the wax which gets absorbed in the wick and then gets burnt (which is really oxidation) to produce heat energy<span> as well as light </span>energy. The energy<span> transforms from chemical </span>energy<span> to heat and light </span>energy<span>. Because when the </span>candle burns<span> a chemical reaction </span>occurs<span>, and produces heat and light.
</span>
He will swim 180m if he stays at a constant rate of 30m/min
Explanation:
First I’m going to use 6 min for the 5min 60s
Then if he swims 30m/min then I’m 6min, 30•6 he’ll swim 180m
Hope this helps!