Answer:
They can generate potentials spontaneously because they have Unstable Membrane Potentials.
Explanation:
Autorythmic cells or Pacemaker cells are cells that provide Action potentials (electrical impulses) that starts off the cardiac cycle.
N:B This action potential is created spontaneously.
To explain further, the heart originate in specialized cardiac muscle cells, called autorhythmic cells, that can excite themselves and therefore are able to generate an action potential without external stimulation by nerve cells. And this sets the cardiac cycle i
(Pumping of the heart) into motion. (The pace maker potential)
The Autorhythmic cells create an action potential spontaneously
And this is possible because they have an UNSTABLE RESTING POTENTIAL that is continuously depolarizing, while it drifts slowly toward threshold. As Na+ ions enter the cell, the inner surface of the plasma membrane becomes less negative gradually, thus generating the pacemaker potential.
Answer:
I feel exited and happy I enjoy it with my friend
Answer:
Its mechanical energy is the same.
Explanation:
If forces are only conservative, the mechanical energy will be the same.
It can be different if energy get transformed in another kind of energy like elastic energy for example, although the amount of energy is always the same.
If we just have mechanical energy not geting transformed we have:
Em=K+U
Em: Mechanical energy
K: Kinetic energý
U: Potential energy
Then if Kinetic energy decreases 10J, Potential energy will grow up 10J to keep the same amount of mechanical energy.
The capacitance of the capacitor is 
Explanation:
The capacitance of a parallel-plate capacitor is given by the equation

where
k is the dielectric constant of the medium
is the vacuum permittivity
A is the area of the plates
d is the separation between the plates
For the capacitor in this problem, we have:
k = 2.1 is the dielectric constant
is the separation between the plates
(I assumed that 5.4 m is a typo, since it is not a realistic size for the side of the plate)
Therefore, the capacitance of the capacitor is

Learn more about capacitors:
brainly.com/question/10427437
brainly.com/question/8892837
brainly.com/question/9617400
#LearnwithBrainly