Answer:
The change in momentum is
Explanation:
From the question we are told that
The mass of the probe is 
The location of the prob at time t = 22.9 s is 
The momentum at time t = 22.9 s is
The net force on the probe is 
Generally the change in momentum is mathematically represented as

The initial time is 22.6 s
The final time is 22.9 s
Substituting values

Answer:
Distance = 6.667 kilometres
Explanation:
Given the following data;
Speed = 20 km/h
Departure time = 7:00
Arrival time = 7:20
Time taken = 20 minutes
To calculate the distance travelled from home to school;
First of all, we would have to convert the value of time in minutes to hours.
Conversion:
60 minutes = 1 hour
20 minutes = X hours
Cross-multiplying, we have;
X = 20/60 = 1/3 hours
Mathematically, the distance travelled by an object is calculated by using the formula;
Distance = speed * time
Distance = 20 * 1/3
Distance = 20/3 =
Distance = 6.667 kilometres
The total work is
(mass of the elevator, kg) x (9.8 m/s²) x (9.0 m) Joules .
The correct answer is 1.4285714.
In physics, velocity is characterised as a vector measurement of the motion's direction and speed. To be more precise, the rate of change in an object's position relative to a frame of reference and time is another way to describe velocity. The definition of velocity simply states the rate of motion of an object in a specific direction. It determines how quickly or slowly something is going.
Velocity = distance/ time
Thus time = distance/velocity
Here velocity = 350m/s
diatnce = 500 m
time = 500/350
time = 1.42857142857
t= 200m /350m/s = 1.4285714
To learn more about velocity refer the link:
brainly.com/question/18084516
#SPJ9
The maximum force that the athlete exerts on the bag is equal to 1,500 N and in the opposite direction as the force that the bag exerts on the athlete.
<h3>
Newton's third law of motion</h3>
Newton's third law of motion states that action and reaction are equal and opposite.
Fa = -Fb
The force exerted by the athlete on the bag is equal to the force the bag exerted on the athlete but in opposite direction.
Thus, the maximum force that the athlete exerts on the bag is equal to 1,500 newtons and in the opposite direction as the force that the bag exerts on the athlete.
Learn more about force here: brainly.com/question/12970081
#SPJ1