1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
3 years ago
7

The third term is given 2 and the sixth term is 15 . find the first term and the common ratio .​

Mathematics
1 answer:
Mumz [18]3 years ago
8 0

Answer:

Answer to your query is provided below in the image attached

You might be interested in
Apply the distributive property to the expression to write an equivalent expression. Complete the statements.
Arlecino [84]

Answer:

4(x+4)

Step-by-step explanation:

Find to GCF of 4x+16.

Now factor out the GCF by dividing each term in the expression by 4.

4x divided by the GCF is x, and 16 divided by the GCF is 4.

The equivalent expression is 4(x+4).

7 0
3 years ago
Read 2 more answers
Internet sites often ask for a secret phrase to recover lost passwrds. Jason encoded a secret phrase using matrix multiplication
Aleonysh [2.5K]

Answer:

cats rule dogs drool is correct ty<3

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
За^n(а^n + a^n-1) what is it??
solniwko [45]
Distribute the 3a^n to all the other values then solve...
(3a^n*a^n)+(3a^n*a^n)+(3a^n*-1)
4a^2n+4a^2n-3a^n=
8a^2n-3a^n
8 0
4 years ago
Can y'all help me with this question?
Maslowich
The answer is A.27 it is 9 * 3 is how you get it
6 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Other questions:
  • HEEEEEEEEELLLLLLLLLLLLLLPPPPPPPPPPPPP MMMMMMMMMEEEEEEEEE SLOBS!!!!
    15·1 answer
  • TON OF FREE POINTS FOR QUICKEST AND SMARTEST ANSWER! SIMPLE GEOMETRY. WHO IS THE BRAINLIEST? NEED HELP ASAP FORGOT HOW TO DO THI
    12·2 answers
  • A 37​-inch piece of steel is cut into three pieces so that the second piece is twice as long as the first​ piece, and the third
    6·1 answer
  • In simplified form, V18 is
    10·1 answer
  • 10 cards are numbered from 1 to 10 and placed in a box. One card is selected at random and is not replaced. Another card is then
    9·2 answers
  • The graph shows the amount of water in a sink after several minutes.
    12·1 answer
  • When subtracting decimals with the same sign you
    5·1 answer
  • Answer? .............................
    15·1 answer
  • What are the equivalent ratios for 10:25
    14·2 answers
  • If the original quanity is 10 and the new quanity is 12, what is the percent increase
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!