Answer:
v = 6.315 cm
Explanation:
given,
R₁ = 4 cm = 0.04 m
R₂ = 15 cm = 0.15 m
n =1.5




v = 0.06315 m
v = 6.315 cm
hence, the distance of the image from the back surface is v = 6.315 cm
Answer:
ΔT = 
Explanation:
In a simple harmonic motion, specifically in the simple pendulum, the angular velocity
w =
angular velocity and period are related
w = 2π / T
we substitute
2π / T = \sqrt{\frac{g}{L} }
T =
In this exercise indicate that for a long Lo the period is To, then and increase the long
L = L₀ + ΔL
we substitute
T =
T = 
in general the length increments are small ΔL/L «1, let's use a series expansion
we keep the linear term, let's substitute
T =
if we do
T = T₀ + ΔT
T₀ + ΔT =
T₀ + ΔT = T₀ +
ΔT = 
Answer:
h = 2.64 meters
Explanation:
It is given that,
Mass of one ball, 
Speed of the first ball,
(upward)
Mass of the other ball, 
Speed of the other ball,
(downward)
We know that in an inelastic collision, after the collision, both objects move with one common speed. Let it is given by V. Using the conservation of momentum to find it as :


V = 7.2 m/s
Let h is the height reached by the combined balls of putty rise above the collision point. Using the conservation of energy as :



h = 2.64 meters
So, the height reached by the combined mass is 2.64 meters. Hence, this is the required solution.
Answer:
Speed only defines the magnitude of how fast an object is moving from one point to another. This is a scalar quantity (Only Value)
Velocity defines both how fast an object is moving and also in what direction the object is moving. This is a vector quantity (Value + Direction)