Answer: Yes.
Explanation:
There is gravity in water because How does the water go up in the cycle? the garavity with the wind pull it up.
Answer:
a. 13.7 s b. 6913.5 m
Explanation:
a. How much time before being directly overhead should the box be dropped?
Since the box falls under gravity we use the equation
y = ut - 1/2gt² where y = height of plane above ocean = 919 m, u = initial vertical velocity of airplane = 0 m/s, g = acceleration due to gravity = -9.8 m/s² and t = time it takes the airplane to be directly overhead.
So,
y = ut - 1/2gt²
y = 0 × t - 1/2gt²
y = 0 - 1/2gt²
y = - 1/2gt²
t² = -2y/g
t = √(-2y/g)
So, t = √(-2 × 919 m/-9.8 m/s²)
t = √(-1838 m/-9.8 m/s²)
t = √(187.551 m²/s²)
t = 13.69 s
t ≅ 13.7 s
So, the box should be dropped 13.69 s before being directly overhead.
b. What is the horizontal distance between the plane and the victims when the box is dropped?
The horizontal distance x between plane and victims, x = speed of plane × time it takes for box to drop = 505 m/s × 13.69 s = 6913.45 m ≅ 6913.5 m
Let
denote the position vector of the ball hit by player A. Then this vector has components

where
is the magnitude of the acceleration due to gravity. Use the vertical component
to find the time at which ball A reaches the ground:

The horizontal position of the ball after 0.49 seconds is

So player B wants to apply a velocity such that the ball travels a distance of about 12 meters from where it is hit. The position vector
of the ball hit by player B has

Again, we solve for the time it takes the ball to reach the ground:

After this time, we expect a horizontal displacement of 12 meters, so that
satisfies

