Answer:
soi nuevo
Explanation:me regalan puntos
The maximum pressure variations the human ear can withstand above and below atmospheric pressure is around 30 pa. the normal atmospheric pressure is around 101325 pa. hence the variation in the maximum pressure for human ear is very small as compared to the atmospheric pressure. if the ear is exposed to a pressure greater than this , it can cause permanent damage to the ear.
The total momentum of the players after collision is 130 kgm/s.
The given parameters:
- <em>Initial momentum of the returner, </em>
<em> = 0 kgm/s</em> - <em>The initial momentum of the diving player, </em>
<em> = 130 kgm/s</em>
The total momentum of the players after collision is determined by applying the principle of conservation of linear momentum as follows;

Thus, the total momentum of the players after collision is 130 kgm/s.
Learn more about conservation of linear momentum here: brainly.com/question/7538238
To solve this problem we will apply the concepts related to Reyleigh's criteria. Here the resolution of the eye is defined as 1.22 times the wavelength over the diameter of the eye. Mathematically this is,

Here,
D is diameter of the eye


The angle that relates the distance between the lights and the distance to the lamp is given by,

For small angle, 
Here,
d = Distance between lights
L = Distance from eye to lamp
For small angle 
Therefore,



Therefore the distance is 5.367km.
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>