Answer:
U = 9.1 m/s
Explanation:
from the question we are given the following
time (t) = 1.8 s
angle = 23 degrees
acceleration due to gravity (g) = 9.8 m/s^{2}
let us first calculate the initial velocity (u) which too the first ball to its maximum height from the equation below
v = u + 0.5at
- The final velocity (v) is zero since the ball comes to rest
- The time (t) it takes to get to the maximum height would be half the time it is in the air, t = 0.5 x 1.8 = 0.9
therefore
0 = u - (0.5 x 9.8 x 0.9)
u = 7.9 m/s
for the second ball to get to the maximum height of the first ball, the vertical component of its initial velocity (U) must be the same as the initial velocity of the first ball. therefore
U sin 60 = 7.9
U = 7.9 ÷ sin 60
U = 9.1 m/s
The troposphere is the lowermost layer of the Earth's atmosphere. Most of the weather phenomena, systems, convection, turbulence and clouds occur in this layer, although some may extend into the lower portion of the stratosphere.
30000 btuh /3413 btuh/kw. = 8.8 kw
8.8 kw/.746 kw/hp = 11.8 hp if COP is 1
11.8/3 hp (COP coefficient of performance) = 3.99 COP
>>>So yes a 3.0 hp compressor with a nominal COP of 4 will handle the 30,000 btuh load.
3.2 to 4.5 is expected COP range for an air cooled heat pump or a/c unit.
Answer:
Explanation:
Atmospheric pressure = 7 x 10⁴ Pa
force on a disk-shaped region 2.00 m in radius at the surface of the ocean due to atmosphere = pressure x area
= 7 x 10⁴ x 3.14 x 2 x 2
= 87.92 x 10⁴ N
b )
weight, on this exoplanet, of a 10.0 m deep cylindrical column of methane with radius 2.00 m
Pressure x area
height x density x acceleration of gravity x π r²
= 10 x 415 x 6.2 x 3.14 x 2 x 2
=323168.8 N
c ) Pressure at a depth of 10 m
atmospheric pressure + pressure due to liquid column
= 7 x 10⁴ + 10 x 415 x 6.2 ( hρg)
= 7 x 10⁴ + 10 x 415 x 6.2
(7 + 2.57 )x 10⁴ Pa
9.57 x 10⁴ Pa