Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
9.8m per seccond is the speed of gravity if you drop something like a ball from a tower
The answer is A: can change
Answer:
The acceleration of the both masses is 0.0244 m/s².
Explanation:
Given that,
Mass of one block = 602.0 g
Mass of other block = 717.0 g
Radius = 1.70 cm
Height = 60.6 cm
Time = 7.00 s
Suppose we find the magnitude of the acceleration of the 602.0-g block
We need to calculate the acceleration
Using equation of motion

Where, s = distance
t = time
a = acceleration
Put the value into the formula



Hence, The acceleration of the both masses is 0.0244 m/s².