Answer: The velocity with which the sand throw is 24.2 m/s.
Explanation:
Explanation:
acceleration due to gravity, a = 3.9 m/s2
height, h = 75 m
final velocity, v = 0
Let the initial velocity at the time of throw is u.
Use third equation of motion
The velocity with which the sand throw is 24.2 m/s.
Current is defined as the rate of charge flowing a point every second. Having a current of 1 Ampere signifies 1 Coulomb is flowing in a circuit every second. It is measured by the use of an ammeter which is positioned in series to the component to be measured. The current in the problem is calculated as follows:
I = 2.0 x 10^-4 C / 5.0 x 10^-5 s
<span>I = 4 A or 4.0 x 10^0 A</span>
Explanation:
We want to find the statement that is proven by the fact that the balls reach the same height.
A isn't supported by the evidence. Balls can reach the same height without having the same initial speed.
B isn't supported by the evidence. Balls can reach the same height without having the same launch angle.
C is supported. Projectiles spend the same amount of time going up as they do coming down, so if two projectiles reach the same height, then they must spend the same amount of time in the air.
D isn't supported by the evidence. Balls thrown at the same speed and complementary angles have the same range but different heights.
E isn't supported by the evidence. The mass of the ball doesn't affect the height.