Answer:
The child's mass is 14.133 kg
Explanation:
From the principle of conservation of linear momentum, we have;
(m₁ + m₂) × v₁ + m₃ × v₂ = (m₁ + m₂) × v₃ - m₃ × v₄
We include the negative sign as the velocities were given as moving in the opposite directions
Since the child and the ball are at rest, we have;
v₁ = 0 m/s and v₂= 0 m/s
Hence;
0 = m₁ × v₃ - m₂ × v₄
(m₁ + m₂)× v₃ = m₃ × v₄
Where:
m₁ = Mass of the child
m₂ = Mass of the scooter = 2.4 kg
v₃ = Final velocity of the child and scooter = 0.45 m/s
m₃ = Mass of the ball = 2.4 kg
v₄ = Final velocity of the ball = 3.1 m/s
Plugging the values gives;
(m₁ + 2.4)× 0.45 = 2.4 × 3.1
(m₁ + 2.4) = 16.533
∴ m₁ + 2.4 = 16.533
m₁ = 16.533 - 2.4 = 14.133 kg
The child's mass = 14.133 kg.
Cardiovascular exercise involves movement that gets your heart rate up to improve oxygen consumption in the body.
Examples of cardiovascular exercise (Aerobic) include:
Spinning
Running
Swimming
Walking
Hiking
Dancing
Kick Boxing
Answer:
Shape of the object
Explanation:
This depends on the shape of the object. For a spherical object, a unitless value of 0.47 is typical. The magnitude of the velocity squared. The faster you go, the greater the air resistance force
Answer:
60.18 N
Explanation:
Given that:
The force applied on the sled = 100 N
Suppose, the angle between the sled rope and the ground = 53°
The horizontal force which acts in the horizontal direction can be expressed as:



But if the angle between the sled rope is parallel to the ground. Then, we use an angle on a straight line which is = 180°


= 100 × -1
= -100 N