1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
chubhunter [2.5K]
4 years ago
7

Find the missing length

Mathematics
1 answer:
shutvik [7]4 years ago
7 0
The small triangle and big triangle are similar - this means they have the same angles. So, if you know the ratio of a side of the big triangle (12) to a side of the small triangle inside it (4), you know the ratio of the other sides. In this case, the side ratio (small to big triangle) is 1/3. Thus, the missing side length is 18/3=6.
Brainliest? ;D
You might be interested in
A number increased by its product with 7 equals 48. Find the number.
Oxana [17]

Answer:

x = 6

Step-by-step explanation:

x + 7x = 48

8x = 48

3 0
4 years ago
Read 2 more answers
Can i get some help with #5 please
Sidana [21]
 a = 6, is your answer.

Square both sides
<span><span><span>9=a−2<span>(6−a)(2a−3)</span>+3</span>9=a-2\sqrt{(6-a)(2a-3)}+3</span><span>9=a−2<span>√<span><span>​<span>(6−a)(2a−3)</span></span>​<span>​​</span></span></span>+3

</span></span>2 .Separate terms with roots from terms without roots
<span><span><span>9−a−3=−2<span>(6−a)(2a−3)</span></span>9-a-3=-2\sqrt{(6-a)(2a-3)}</span><span>9−a−3=−2<span>√<span><span>​<span>(6−a)(2a−3)
</span></span>​<span>​​</span></span></span></span></span>
3. Simplify <span><span><span>9−a−3</span>9-a-3</span><span>9−a−3</span></span> to <span><span><span>6−a</span>6-a</span><span>6−a
</span></span><span><span><span>6−a=−2<span>(6−a)(2a−3)</span></span>6-a=-2\sqrt{(6-a)(2a-3)}</span><span>6−a=−2<span>√<span><span>​<span>(6−a)(2a−3)
</span></span>​<span>​​</span></span></span></span></span>
4 .Square both sides
<span><span><span><span><span>(6−a)</span>2</span>=4(6−a)(2a−3)</span>{(6-a)}^{2}=4(6-a)(2a-3)</span><span><span><span>(6−a)</span><span><span>​2</span><span>​​</span></span></span>=4(6−a)(2a−3)

</span></span>5 .Expand
<span><span><span>36−12a+<span>a2</span>=48a−72−8<span>a2</span>+12a</span>36-12a+{a}^{2}=48a-72-8{a}^{2}+12a</span><span>36−12a+<span>a<span><span>​2</span><span>​​</span></span></span>=48a−72−8<span>a<span><span>​2</span><span>​​</span></span></span>+12a

</span></span>6. Simplify <span><span><span>48a−72−8<span>a2</span>+12a</span>48a-72-8{a}^{2}+12a</span><span>48a−72−8<span>a<span><span>​2</span><span>​​</span></span></span>+12a</span></span> to <span><span><span>60a−72−8<span>a2</span></span>60a-72-8{a}^{2}</span><span>60a−72−8<span>a<span><span>​2</span><span>​​</span></span></span></span></span>
<span><span><span>36−12a+<span>a2</span>=60a−72−8<span>a2</span></span>36-12a+{a}^{2}=60a-72-8{a}^{2}</span><span>36−12a+<span>a<span><span>​2</span><span>​​</span></span></span>=60a−72−8<span>a<span><span>​2
</span><span>​​</span></span></span></span></span>
7. Move all terms to one side
<span><span><span>36−12a+<span>a2</span>−60a+72+8<span>a2</span>=0</span>36-12a+{a}^{2}-60a+72+8{a}^{2}=0</span><span>36−12a+<span>a<span><span>​2</span><span>​​</span></span></span>−60a+72+8<span>a<span><span>​2</span><span>​​</span></span></span>=0

</span></span>8. Simplify <span><span><span>36−12a+<span>a2</span>−60a+72+8<span>a2</span></span>36-12a+{a}^{2}-60a+72+8{a}^{2}</span><span>36−12a+<span>a<span><span>​2</span><span>​​</span></span></span>−60a+72+8<span>a<span><span>​2</span><span>​​</span></span></span></span></span> to <span><span><span>36−72a+9<span>a2</span>+72</span>36-72a+9{a}^{2}+72</span><span>36−72a+9<span>a<span><span>​2</span><span>​​</span></span></span>+72</span></span>
<span><span><span>36−72a+9<span>a2</span>+72=0</span>36-72a+9{a}^{2}+72=0</span><span>36−72a+9<span>a<span><span>​2</span><span>​​</span></span></span>+72=0

</span></span>9 .Simplify <span><span><span>36−72a+9<span>a2</span>+72</span>36-72a+9{a}^{2}+72</span><span>36−72a+9<span>a<span><span>​2</span><span>​​</span></span></span>+72</span></span> to <span><span><span>−72a+9<span>a2</span>+108</span>-72a+9{a}^{2}+108</span><span>−72a+9<span>a<span><span>​2</span><span>​​</span></span></span>+108</span></span>
<span><span><span>−72a+9<span>a2</span>+108=0</span>-72a+9{a}^{2}+108=0</span><span>−72a+9<span>a<span><span>​2</span><span>​​</span></span></span>+108=0

</span></span>10.Factor out the common term <span><span>99</span>9</span>
<span><span><span>−9(8a−<span>a2</span>−12)=0</span>-9(8a-{a}^{2}-12)=0</span><span>−9(8a−<span>a<span><span>​2</span><span>​​</span></span></span>−12)=0

</span></span>11. Factor out the negative sign
<span><span><span>−9×−(<span>a2</span>−8a+12)=0</span>-9\times -({a}^{2}-8a+12)=0</span><span>−9×−(<span>a<span><span>​2</span><span>​​</span></span></span>−8a+12)=0

</span></span>12. Divide both sides by <span><span><span>−9</span>-9</span><span>−9</span></span>
<span><span><span>−<span>a2</span>+8a−12=0</span>-{a}^{2}+8a-12=0</span><span>−<span>a<span><span>​2</span><span>​​</span></span></span>+8a−12=0

</span></span>13. Multiply both sides by <span><span><span>−1</span>-1</span><span>−1</span></span>
<span><span><span><span>a2</span>−8a+12=0</span>{a}^{2}-8a+12=0</span><span><span>a<span><span>​2</span><span>​​</span></span></span>−8a+12=0

</span></span>14. Factor <span><span><span><span>a2</span>−8a+12</span>{a}^{2}-8a+12</span><span><span>a<span><span>​2</span><span>​​</span></span></span>−8a+12</span></span>
<span><span><span>(a−6)(a−2)=0</span>(a-6)(a-2)=0</span><span>(a−6)(a−2)=0

</span></span>15. Solve for <span><span>aa</span>a</span>
<span><span><span>a=6,2</span>a=6,2</span><span>a=6,2

</span></span>16 Check solution
When <span><span><span>a=2</span>a=2</span><span>a=2</span></span>, the original equation <span><span><span>−3=<span>6−a</span>−<span>2a−3</span></span>-3=\sqrt{6-a}-\sqrt{2a-3}</span><span>−3=<span>√<span><span>​<span>6−a</span></span>​<span>​​</span></span></span>−<span>√<span><span>​<span>2a−3</span></span>​<span>​​</span></span></span></span></span> does not hold true.
We will drop <span><span><span>a=2</span>a=2</span><span>a=2</span></span> from the solution set.

17. Therefore,
<span><span><span>a=6</span></span><span /></span>


5 0
3 years ago
PLEASE HELP I NEED THIS NOW
Nostrana [21]

Answer:

5

Step-by-step explanation:

Finding the Value of X includes whole fractions as in, multiplying fractions and converting fractions to decimals but thankfully you dont have to convert its just 5x5 which is 5 times x and 5 times 4 then u can see that 5 is the actually answer of the question at whole. hope this helps !

6 0
3 years ago
Read 2 more answers
Quiz 1-2 angle measure and relationships Unit 1: basics
Ivenika [448]

Answer/Step-by-step explanation:

1. Sides of <4 are \overline{DG} and \overline{DC}

2. Vertex of <2 is the endpoint of the two lines that form <2.

Vertex of <2 is D.

3. Another name of <3 is <EDG

4. <5 is less than 90°. Therefore, <5 is classified as am acute angle.

5. <CDE is a straight angle.

6. m<5 = 42°,

m<1 = 117°

m<1 + m<5 = m<CDF (angle addition postulate)

42° + 117° = m<CDF (Substitution)

159° = m<CDF

7. m<3 = 73°

m<FDG = 90° (DG is perpendicular to DF)

m<FDE + m<3 = 90° (angle addition postulate)

m<FDE + 73° = 90° (substitution)

m<FDE = 90° - 73° (Substitution property of equality)

m<FDE = 17°

3 0
3 years ago
How to do long division problem 5 devided by 98
murzikaleks [220]
98 ÷ 5 = 19.6

19 × 5 = 95

98 - 95 = 3

98 <span>÷ 5 = 19 R3</span>
4 0
3 years ago
Read 2 more answers
Other questions:
  • Find the value of x.<br> A) 71 <br> B) 72 <br> C) 73 <br> D) 75<br><br> -39 + x ) 146
    5·1 answer
  • Julie covered her floor with carpet squares that were each 1 foot on a side. She used 120 carpet squares.what is the area of the
    6·1 answer
  • Jim had one hour to get to the
    15·1 answer
  • Which of the following represents a perfect square trinomial?
    13·2 answers
  • Open furniture store has the following sale 1/2 off Mr. Davis bought 2 chairs during the sale the regular price of each chair wa
    12·2 answers
  • Somebody please help!
    10·2 answers
  • The probability that Brock scores a penalty kick is LaTeX: \frac{3}{10}3 10 . If he shoots 50 penalty kicks, how many "goals" ca
    11·1 answer
  • Need the answers to these questions please
    6·1 answer
  • Which could be the graph of f(x) = |x -h| + k if h and k are both positive?
    7·1 answer
  • A chemist has 5 1/10 kg of calcium chloride.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!