Originally, you would get 6.56666 repeating as your answer. When you end up rounding, or estimating it, it then becomes just simply 7.
soo this may seem a little awkwark but it still should provide the same resault however its faster :)
so we have
(48x^5-16x^3+40x)/8x
What we are going to be doing is factoring out any and all possibilities for
(48x^5-16x^3+40x)
first factor
(8x(6x^4-2x^2+5))/8x
when we get to this step simplify 8x
we are left with 6x^4-2x^2+5
in order to get an answer that would often be used by long devision just get rid of the +5
This is just a remainder using long devision your instructer may ask for
6x^4-2x^2
Hope it helps
Answer:
The slope of line for given points is 
Step-by-step explanation:
Given points of line as :
A = ( - 7 , 15 ) i, e
= - 7 ,
= 15
B = ( 10 , 27 ) i.e
= 10 ,
= 27
Let The slope of line be m
So , The slope with two points is given as equation
m = 
Or, m = 
Or, m = 
Hence The slope of line for given points is
. Answer
Divide, because you are splitting the 8 popsicles between them.
Answer:
Well, these simulation are based on the statistics (lognormal-distributed PE, χ²-distributed s²). If you believe that only the ‘gold-standard’ of subject-simulations are valid, we can misuse the function sampleN.scABEL.sdsims() – only for the 3- and 4-period full replicates and the partial replicate:
# define a reg_const where all scaling conditions are ‘switched off’
abe <- reg_const("USER", r_const = NA, CVswitch = Inf,
CVcap = Inf, pe_constr = FALSE)
CV <- 0.4
2x2x4 0.05 0.4 0.4 0.95 0.8 1.25 34 0.819161 0.8
Since the sample sizes obtained by all simulations match the exact method, we can be confident that it is correct. As usual with a higher number of simulations power gets closer to the exact value.
Step-by-step explanation: