Answer:
μk = (Vf - Vc)/(T×g)
Explanation:
Given
Vi = initial velocity of the car
Vf = final velocity of the car
T = Time of application of brakes
g = acceleration due to gravity (known constant)
Let the mass of the car be Mc
Assuming only kinetic frictional force acts on the car as the driver applies the brakes,
The n from Newtown's second law of motion.
Fk = Mc×a
Fk = μk×Mc×g
a = (Vf - Vc)/T
Equating both preceding equation.
μk×Mc×g = Mc × (Vf - Vc)/T
Mc cancels out.
μk = (Vf - Vc)/(T×g)
125 b
simultaneous kinematic equations two variables are F and stopping distance
Answer:
the frequency heard by the observer is equal to 2677 Hz
Explanation:
given,
velocity of the observer = 17 m/s
speed of the sound = 343 m/s
velocity of the source = 0 m/s
frequency emitted from the source = 2550 Hz
velocity of observer is negative as it is approaching the source. f = 2676.38 Hz ≈ 2677 Hz
hence, the frequency heard by the observer is equal to 2677 Hz
Answer:
Tendons connect muscle to bone. These tough, yet flexible, bands of fibrous tissue attach the skeletal muscles to the bones they move. Essentially, tendons enable you to move; think of them as intermediaries between muscles and bones.
Hope this helps! (:
Answer:
two people who are not going to be able to make it to class today because of the day and then I will be there at the house and then we can go