Answer:
Electric field at a point ( x , y , z) is
.
Explanation:
Given :
Electric potential in the region is , 
We need to find the electric field .
We know , electric field ,
{ Here r is distance }
In coordinate system ,
{
is partial derivative }
Putting all values we get ,

Hence , this is the required solution.
Yes, the answer is in fact C. All of the above.
Variable stars are stars that change in brightness. The change could be due to the physical change in the star or it could also be caused when another star crosses another, or in other words eclipse.
Answer:
Explanation: It would go straight because objects in motion stay in motion and it would stay the same direction
Kinetic energy = (1/2) (mass) x (speed)²
At 7.5 m/s, the object's KE is (1/2) (7.5) (7.5)² = 210.9375 joules
At 11.5 m/s, the object's KE is (1/2) (7.5) (11.5)² = 495.9375 joules
The additional energy needed to speed the object up from 7.5 m/s
to 11.5 m/s is (495.9375 - 210.9375) = <em>285 joules</em>.
That energy has to come from somewhere. Without friction, that's exactly
the amount of work that must be done to the object in order to raise its
speed by that much.
Remark
When you are asked a question like this, the first thing to do is search out a formula and put some limits on it.
Formula
I = E/R which comes from E = IR. To get to the derived formula, divide both sides by R
E/R = I*R/R
E/R = I
Discussion
This is an inverse relationship. That means that as one goes up the other one will go down.
So in this case you keep E constant and you manipulate R and look at your results for I
Case 1
Let us say that E = 10 volts
Let us also say the R = 10 ohms
I = E/R
I = 10/10
I = 1 ohm
Case Two
Let's raise the Resistance to 100 ohms
E = 10
R = 100
I = 10/100 = 0.1
Conclusion
As the Resistance goes up, the current goes down. Answer: A