The speed of a electron that is accelerated from rest through an electric potential difference of 120 V is 
<h3>
How to calculate the speed of the electron?</h3>
We know, that the energy of the system is always conserved.
Using the Law of Conservation of energy,
U=0
Here, K is the kinetic energy and U is the potential energy.
Now, substituting the formula of U and K, we get:
=0------(1)
Here,
m is the mass of the electron
v is the speed of the electron
q is the charge on the electron
V is the potential difference
Let
and
represent the final and initial speed.
Here,
=0
Solving for
, we get:


=6.49
m/s
To learn more about the conservation of energy, refer to:
brainly.com/question/2137260
#SPJ4
Answer:
The force is Inertia
Explanation:
The force that acts on an object to move it from rest or a constant straight line motion is known as Inertia.
In physics the above statement is governed by Newton's first law of motion which is also known as Law of Inertia.
This law states that, an object that is at rest will remain at rest and an object that is moving will continue to move in a straight line with constant speed, if and only if the net force acting on the object is zero.
This implies that, A stationary object will remain motionless if no force acts on it while a object with constant velocity will continue moving with constant velocity until a force acts on it (neglecting resistance from air and friction).
Hello here
It means that a person has the ability to describe, explain, and predict natural phenomena.
Answer:
c) 2.02 x 10^16 nuclei
Explanation:
The isotope decay of an atom follows the equation:
ln[A] = -kt + ln[A]₀
<em>Where [A] is the amount of the isotope after time t, k is decay constant, [A]₀ is the initial amount of the isotope</em>
[A] = Our incognite
k is constant decay:
k = ln 2 / Half-life
k = ln 2 / 4.96 x 10^3 s
k = 1.40x10⁻⁴s⁻¹
t is time = 1.98 x 10^4 s
[A]₀ = 3.21 x 10^17 nuclei
ln[A] = -1.40x10⁻⁴s⁻¹*1.98 x 10^4 s + ln[3.21 x 10^17 nuclei]
ln[A] = 37.538
[A] = 2.01x10¹⁶ nuclei remain ≈
<h3>c) 2.02 x 10^16 nuclei</h3>
La masa molar de 65 litros de SO2 es igual a 64,1 g/mol.
<h3>Masa molar</h3>
La masa molar de un compuesto depende de su masa presente en 1 mol, entonces:

Para calcular la masa molar de un compuesto, simplemente suma las masas de cada elemento en el compuesto, así:


Así, la masa molar de 65 litros de SO2 es igual a 64,1 g/mol.
Obtenga más información sobre la masa molar en: brainly.com/question/17109809