Answer: a) the greater speed for the ball is getting with the large radius of the circle. b) 1.68* 10 ^3 m/s^2 c) 1.25*10^3 m/s^2
Explanation: In order to solve this problem firstly we have to consider that speed in a of the circular movement is directly the angular rotation multiply the radius of the circle so by this we found that the second radius get large speed.
Secondly to calculate the centripetal acceleration for the ball we have to considerer the relationship given by:
acceleration in a circular movement= ω^2*r 
so
a1= (8.44 *2*π)^2*r1=1.68 *10^3 m/s^2
a2= (5.95*2*π)^2*r2=1.25*10^3  m/s^2
 
        
             
        
        
        
Answer:
This is True
Explanation:
I just did this exact unit in bio last week I hope this helps ;)
 
        
             
        
        
        
Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A: 
 
A skateboarder flies horizontally off a cement planter. After a time of 3 seconds (Δt), he lands with a final velocity (v) of −4.5 m/s. Assuming the acceleration is -9.8 m/s² (a), we can calculate the initial velocity of the skateboarder (v₀) using the kinematic equation A.

Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A: 
 
Learn more: brainly.com/question/4434106
 
        
             
        
        
        
Answer:
(a) 1.58 V
(b) 0.0126 Wb
(c) 0.0493 V
Solution:
As per the question:
No. of turns in the coil, N = 400 turns
Self Inductance of the coil, L = 7.50 mH =  
 
Current in the coil, i = ![1680cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=1680cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D) A
 A
where

Now,
(a)  To calculate the maximum emf:
We know that maximum emf induced in the coil is given by:

![e = L\frac{d}{dt}(1680)cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20L%5Cfrac%7Bd%7D%7Bdt%7D%281680%29cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
![e = - 7.50\times 10^{- 3}\times \frac{\pi}{0.0250}\times \frac{d}{dt}(1680)sin[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20-%207.50%5Ctimes%2010%5E%7B-%203%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B0.0250%7D%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%281680%29sin%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
For maximum emf,  should be maximum, i.e., 1
 should be maximum, i.e., 1
Now, the magnitude of the maximum emf is given by:

(b) To calculate the maximum average flux,we know that:

(c) To calculate the magnitude of the induced emf at t = 0.0180 s:

