Answer:
<em>P=mgh</em>
<em>P=mghm=55</em>
<em>P=mghm=55g=9.8 or ~10</em>
<em>P=mghm=55g=9.8 or ~10h=27</em>
Explanation:
<em>hope</em><em> it</em><em> will</em><em> help</em><em> you</em><em> have</em><em> a</em><em> great</em><em> day</em><em> bye</em><em> and</em><em> Mark</em><em> brainlist</em><em> if</em><em> the</em><em> answer</em><em> is</em><em> correct</em>
<em>
</em>
<em> </em><em>#</em><em>c</em><em>arry </em><em>on </em><em>learning</em>
Answer:
Reflection of sound waves also leads to echoes. Echoes are different than reverberations. Echoes occur when a reflected sound wave reaches the ear more than 0.1 seconds after the original sound wave was heard. ... Reflection of sound waves off of curved surfaces leads to a more interesting phenomenon.
The unit used to measure wavelength is a Nano-meter
Answer:
9) This is a case of deceleration
10)-0.8 ms-2
b) acceleration is the change in velocity with time
11)
a) 100 ms-1
b) 100 seconds
12) 10ms-1
13) more information is needed to answer the question
14) - 0.4 ms^-2
15) 0.8 ms^-2
Explanation:
The deceleration is;
v-u/t
v= final velocity
u= initial velocity
t= time taken
20-60/50 =- 40/50= -0.8 ms-2
11)
Since it starts from rest, u=0 hence
v= u + at
v= 10 ×10
v= 100 ms-1
b)
v= u + at but u=0
1000 = 10 t
t= 1000/10
t= 100 seconds
12) since the sprinter must have started from rest, u= 0
v= u + at
v= 5 × 2
v= 10ms-1
14)
v- u/t
10 - 20/ 25
10/25
=- 0.4 ms^-2
15)
a=v-u/t
From rest, u=0
8 - 0/10
a= 8/10
a= 0.8 ms^-2
Answer:

Explanation:
Take at look to the picture I attached you, using Kirchhoff's current law we get:

This is a separable first order differential equation, let's solve it step by step:
Express the equation this way:

integrate both sides, the left side will be integrated from an initial voltage v to a final voltage V, and the right side from an initial time 0 to a final time t:

Evaluating the integrals:

natural logarithm to both sides in order to isolate V:

Where the term RC is called time constant and is given by:
