In that case, there are three possible scenarios:
-- If the braking force is less than the force delivered by the engine,
then the car will continue to accelerate, and the brakes will eventually
overheat and erupt in flame.
-- If the braking force is exactly equal to the force delivered by the engine,
then the car will continue moving at a constant speed, and the brakes will
eventually overheat and erupt in flame.
-- If the braking force is greater than the force delivered by the engine,
then the car will slow down and eventually stop. If it stops soon enough,
then the absorption of kinetic energy by the brakes will end before the
brakes overheat and erupt in flame. Even if the engine is still delivering
force, the brakes can be kept locked in order to keep the car stopped ...
They do not absorb and dissipate any energy when the car is motionless.
Answer: 2.92 s
Explanation:
Given
Mass of ball is 
The initial velocity of the ball is 
Velocity after the rebound is 
Force during the contact is 
We know, change in momentum is Impulse


Thus, the force is applied for 2.92 s
As an airplane moves through the air, its wings cause changes in the
speed and pressure of the air moving past them. These changes result in
the upward force called lift.
The Bernoulli principle states that an increase in the speed of a fluid
occurs simultaneously with a decrease in the pressure exerted by the
fluid.
A wing is shaped and tilted so the air moving over it moves faster than
the air moving under it. As air speeds up, its pressure goes down. So
the faster-moving air above exerts less pressure on the wing than the
slower-moving air below. The result is an upward push on the wing—lift!
Answer:
0.00899 N
Explanation:
The magnitude of the electrostatic force between two charges is given by the equation:
where:
is the Coulomb's constant
are the charges
r is the distance between the two charges
And the force is:
- Repulsive if the two charges have same sign
- Attractive if the two charges have opposite sign
In this problem we have:
(charge of object 1)
(charge of object 2)
r = 1 m (separation between the objects)
So, the electric force is
