Answer:
Maybe because you not throwing it stringer or lighter. And you need to control yourself prob. maybe you did line it correctly or maybe your just bad to be honest. -.-
Explanation:
<span>B. If the temperature of a solid is increased, the solid expands and its volume increases.</span>
Answer:

Explanation:
Static friction occurs when an object initially starts at rest. When the surfaces of the materials touch, the microscopic unevenness interlock greatest with each other, causing the most friction out of the three.
During sliding friction, an object is already moving or in motion. The microscopic surfaces still interlock, but because the object is in motion, it has a momentum. Therefore, the magnitude of sliding friction is less than that of static friction.
Rolling friction occurs when an object rolls across some surface. Rather than surfaces interlocking, rolling friction is caused by the constant distortion of surfaces. As it rolls, the surfaces of the object are constantly wrapping and changing. This distortion causes the rolling friction. However, it is much less in magnitude when compared to static or sliding friction.
The answer is B tell me if I am wrong.
Answer:
Explanation:
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>FALSE. </em>The specific lines are obseved because of the energy level transition of an electron in an specific level to another level of energy.
The energies of atoms are not quantized. <em>FALSE. </em>The energies of the atoms are in specific levels.
When an electron moves from one energy level to another during absorption, a specific wavelength of light (with specific energy) is emitted. <em>FALSE. </em>During absorption, a specific wavelength of light is absorbed, not emmited.
Electrons are not allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>TRUE. </em>Again, you can observe just the transition due the change of energy of an electron in the quantized energy level
When an electron moves from one energy level to another during emission, a specific wavelength of light (with specific energy) is emitted. <em>TRUE. </em>The electron decreases its energy releasing a specific wavelength of light.
The energies of atoms are quantized. <em>TRUE. </em>In fact, the energy of all subatomic, atomic, and molecular particles is quantized.