The advantage is that we do not run out of resources and a disadvantage is that is dangerous when a “human” gets too close and gets sick by the radiation.
Answer:
Explanation:
kinetic energy required = 1.80 MeV
= 1.8 x 10⁶ x 1.6 x 10⁻¹⁹ J
= 2.88 x 10⁻¹³ J
If v be the velocity of proton
1/2 x mass of proton x v² = 2.88 x 10⁻¹³
= .5 x 1.67 x 10⁻²⁷ x v² = 2.88 x 10⁻¹³
v² = 3.45 x 10¹⁴
v = 1.86 x 10⁷ m /s
If V be the potential difference required
V x e = kinetic energy . where e is charge on proton .
V x 1.6 x 10⁻¹⁹ = 2.88 x 10⁻¹³
V = 1.8 x 10⁶ volt .
Answer:
Explanation:
We have to find electric potential V at a distance r.
a) For r>R,
The electric field in the cylinder is given by
E.A equating it to the other electric field given by
б.A/ε₀
Here the area of cylinder is given by= 2*3.14*r*L
While for the outside, the area= 2*3.14*R*L
Equating both, we get
E= бR/rε₀
Now,
The potential difference is given as:
ΔV= -бR/rε₀ and integrating right side with respect to dr under limits r and R.
Where ΔV= V₀-V
So solving we get
V₀=V-бR/ε₀ln (r/R)
b) For r<R i.e. inside the cylinder
There will be no electric field produced as E=0
So ultimately Vin= V
c) V=0 at r= infinity.