Answer:
Due to an electron-pair acceptor and donor.
Explanations:
<em><u>Lewis acid</u></em> can be defined as an electron-pair acceptor. An example is Hydrogen ion(H+). This is because it is a proton and it distributes positive charge which means that it accepts electrons(negative charge).
<em><u>Lewis base</u></em> can be defined as an electron-pair donor. This is because it donates electrons to be accepted by the proton. An example is ammonia(NH3).
<span>34.2 grams
Lookup the atomic weights of the involved elements
Atomic weight potassium = 39.0983
Atomic weight Chlorine = 35.453
Atomic weight Oxygen = 15.999
Molar mass KClO3 = 39.0983 + 35.453 + 3 * 15.999 = 122.5483 g/mol
Moles KClO3 = 87.4 g / 122.5483 g/mol = 0.713188188 mol
The balanced equation for heating KClO3 is
2 KClO3 = 2 KCl + 3 O2
So 2 moles of KClO3 will break down into 3 moles of oxygen molecules.
0.713188188 mol / 2 * 3 = 1.069782282 mols
So we're going to get 1.069782282 moles of oxygen molecules. Since each molecule has 2 atoms, the mass will be
1.069782282 * 2 * 15.999 = 34.23089345 grams
Rounding the results to 3 significant figures gives 34.2 grams</span>
The amount of heat deposited on the skin is 2.26 kJ.
<h3>What is the amount of heat given off by 1.0 g of steam?</h3>
The amount of heat given off by steam is determined using the formula below:
Quantity of heat = mass * latent heat of vaporization.
Moles of steam = 1.0/18
Heat = 1.0/18 * 40.7
Heat deposited = 2.26 kJ
In conclusion, the quantity of heat is determined from the latent heat of vaporization and the moles of steam.
Learn more about heat of vaporization at: brainly.com/question/26306578
#SPJ1
Answer:
0.1 M
<h3>
Explanation:</h3>
- Molarity refers to the concentration of a solution in moles per liter.
- It is calculated by dividing the number of moles of solute by the volume of solvent;
- Molarity = Moles of the solute ÷ Volume of the solvent
<u>In this case, we are given;</u>
- Number of moles of the solute, NH₄Cl as 0.42 moles
- Volume of the solvent, water as 4200 mL or 4.2 L
Therefore;
Molarity = 0.42 moles ÷ 4.2 L
= 0.1 mol/L or 0.1 M
Thus, the molarity of the solution will be 0.1 M
Answer:
See explanation
Explanation:
When a beaker of ethanoic acid is placed in the refrigerator, its temperature drops and the vessel feels cool.
Now, when we mix ethanoic acid and sodium carbonate, an endothermic reaction occurs, fizzing is observed as carbon dioxide is given off and heat is lost to the surroundings causing the reaction vessel to feel cool to touch.
The difference between putting ethanoic acid in the refrigerator and adding sodium carbonate to the solution is that, in the former, no new substance is formed. The substance remains ethanoic acid when retrieved from the refrigerator. In the later case, new substances are formed. The substance is no more ethanoic acid because a chemical reaction has taken place.