6 electrons... 's' can hold 2..... 'd' can hold 10 and 'f' can hold 14
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
Answer:
If two atoms get close enough together then the electrons of each atom will be attracted to both nuclii
Explanation:
Answer:
-2.86x10³ kJ
Explanation:
The enthalpy of a reaction (ΔH) is defined as the heat produced or consumed by a reaction. In the reaction:
2 C₂H₆(g) + 7 O₂(g) → 4 CO₂(g) + 6 H₂O(g)
The ΔH is the heat envolved in the reaction per 2 moles of C₂H₆. 1.43x10³ kJ are involved when 1 mole reacts. Thus, when 2 moles react, involved heat is:
1.43x10³ kJ ₓ 2 = <em>2.86x10³ kJ</em>. As the reaction is a combustion reaction (Produce CO₂ and H₂O), the heat involved in the reaction is <em>PRODUCED, </em>that means ΔH is negative, <em>-2.86x10³ kJ</em>
Answer:
b) coefficient
Explanation:
Refer to this example:
CH4 +2 O2 → CO2+ 2 H2O
2 is used as a coefficient in this chemical equation.