Answer:
Carnivorous plants are easy to grow, if you follow a few, simple rules.
Wet all of the time.
Mineral-free water.
Mineral-free soil.
Lots of light.
Wet all of the time.
Carnivorous plants are native to bogs and similar nutrient-poor habitats. As a consequence, the plants live in conditions that are constantly damp. To grow healthy carnivorous plants, it is important to duplicate their habitat as closely as possible. Keep the soil wet or at least damp all of the time. The easiest way to do this is use the tray method. Set the pots in a tray or saucer, and keep water in it at all times. Pitcher plants can grow in soggy soil with the water level in the saucer as deep as 1/2 the pot, but most carnivorous plants prefer damp to wet soil, so keep the water at about 1/4 inch and refill as soon as it is nearly gone. Water from below, by adding water to the tray, rather than watering the plant. This will avoid washing away the sticky muscilage of the sundews and butterworts and keep from closing the flytraps with a false alarm.
Mineral-free water.
Always use mineral-free water with your carnivorous plants, such as rainwater or distilled water. Try keeping a bucket near the downspout to collect rainwater. Distilled water can be purchased at the grocery store, but avoid bottled drinking water. There are simply too many minerals in it. The condensation line from an air conditioner or heat pump is another source of mineral-free water. Reverse-osmosis water is fine to use. Carnivorous plants grow in nutrient poor soils. The minerals from tap water can “over-fertilize” and “burn out” the plants. In a pinch, tap water will work for a short while, but flush out the minerals with generous portions of rainwater, when it is available.
Mineral-free soil.
The nutrient poor soils to which the carnivorous plants have adapted are often rich in peat and sand. This can be duplicated with a soil mixture of sphagnum peat moss and horticultural sand. Be sure to check the peat label for sphagnum moss. Other types will not work well. The sand should be clean and washed. Play box sand is great, and so is horticultural sand. Avoid “contractor’s sand” which will contain fine dust, silt, clay and other minerals. Never use beach sand or limestone based sand. The salt content will harm the plants. The ratio of the mix is not critical, 1 part peat with 1 part sand works well for most carnivorous plants. Flytraps prefer a bit more sand, and nepenthes prefer much more peat. Use plastic pots, as terra cotta pots will leach out minerals over time and stress your plants.
Explanation:
Kayo na Po bahala magpaigsi
Answer:
3.052 × 10^24 particles
Explanation:
To get the number of particles (nA) in a substance, we multiply the number of moles of the substance by Avogadro's number (6.02 × 10^23)
The mass of Li2O given in this question is as follows: 151grams.
To convert this mass value to moles, we use;
moles = mass/molar mass
Molar mass of Li2O = 6.9(2) + 16
= 13.8 + 16
= 29.8g/mol
Mole = 151/29.8g
mole = 5.07moles
number of particles (nA) of Li2O = 5.07 × 6.02 × 10^23
= 30.52 × 10^23
= 3.052 × 10^24 particles.
Answer:
See explanation and image attached
Explanation:
Alkenes undergo hydrogenation to give the corresponding alkanes. Where the structure of the original alkene is unknown, we can deduce the structure of the alkene from the structure of the products obtained when it undergoes various chemical reactions.
Now, the fact that we obtained 2-methylhexane upon hydrogenation and the two compounds had different heats of hydrogenation means that the two compounds were geometric isomers. The original compounds must have been cis-2-methyl-3-hexene and trans-2-methyl-3-hexene.
When reacted with HCl, the same compound C7H15Cl is formed because the stereo chemistry is removed.
However, we know that the trans isomer is more stable than the cis isomer hence the cis isomer always has a higher heat of hydrogenation than the trans isomer. Thus X is cis-2-methyl-3-hexene.
I think it's D, because theoretical yield is like, the yield you'd get if 100% of the reactants formed to make product. Well that's how I think of it, but it has something to do with limiting reagents and stuff. Sorry this isn't a really detailed explanation.
Answer:
1
all matter is made of tiny particles called atom