Answer:
partial pressure of gas D Pd = 15.5 kPa
Explanation:
As per the Dalton's law of partial pressure, in a mixture, pressure exerted by each gas when summed gives the total partial pressure exerted by mixture.
P(Total) = P1+P2+P3.....
Given P(Total) = 35.7 kPa
Partial pressure of gas A Pa = 7.8 kPa
Partial pressure of gas B Pb = 3.7 kPa
Partial pressure of gas C Pc = 8.7 kPa
There, Partial pressure of gas D Pd = P(Total) -(Pa+Pb+Pc)
Pd = 35.7-(7.8+3.7+8.7) = 35.7-20.2 kPa = 15.5 kPa
Therefore, partial pressure of gas D Pd = 15.5 kPa
Answer:
have the same number of atoms of each element in the reactants and in the products
Explanation:
<em>The basic principle in balancing a chemical equation would simply be to have the same number of atoms of each element in the reactants and in the products.</em>
<u>A balanced chemical equation is one that has the same number of atoms of each element on the reactant and the product's side of the equation.</u> For example, consider the equation below:

On the reactant's side, there are 2 atoms of H and O while there are 2 atoms of H and 1 atom of O on the product's side. This is an imbalanced equation. In order for it to be balanced, the number of atoms of H and O on the reactant side must be equal to the number of H and O on the product side as below.

。☆✼★ ━━━━━━━━━━━━━━ ☾
I believe the answer would be A. equal temperature
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
<span>The statement best describes the collisions of gas particles according to the kinetic-molecular theory is that the collisions of gas particles in an ideal gas are completely elastic. An expansion in the quantity of gas particles in the holder expands the recurrence of impacts with the dividers and in this manner the weight of the gas. The last propose of the motor sub-atomic hypothesis expresses that the normal active vitality of a gas molecule depends just on the temperature of the gas.</span>
Answer:
negative
Explanation:
When something slows down, its acceleration is the opposite of the velocity.