The correct option is C.
An atom can be either in the ground state or in an excited state. An atom is said to be in the ground state, if the total energy of its electron can not be lowered by moving one or more electrons into different orbitals. At the ground state, the electrons in the atom have the lowest energy possible and they are stable. On the other hand, an atom is said to be in an excited state, if the energy of its electrons can be lowered by transferring one or more electrons into different orbitals. An atom in an excited state has more energy and is less stable.
Answer:
The answer to your question is 0.005
Explanation:
Data
Volume of NaOH = 25 ml
[NaOH] = 0.2 M
moles of NaOH = ?
To solve this problem is not necessary to have the chemical reaction. Just use the formula of Molarity and solve it for moles.
Formula
Molarity = moles / volume
-Solve for moles
moles = Molarity x volume
-Convert volume to liters
1000 ml ---------------- 1 l
25 ml ---------------- x
x = (25 x 1) / 1000
x = 0.025 l
-Substitution
moles = 0.2 x 0.025
-Result
moles = 0.005
Moles of water atoms = mass/molecular weight = 105/18 = 5.83 mol. Number of moles of hydrogen in water = 2 x moles of water = 11.66. Number of H atoms in water = moles of hydrogen x 6.02 x 10^23 = 7.019 x 10^24 ~ 7.02 x 10^24 atoms. Hope this helps.
Answer: B= 210 amps
Explanation:
175
0.75 so you divide it so the answer it 210
since first you find for one
then you multiply 0.75 to the answer you get
Hope this helps :)
Answer:
Option B. 3.0 M
Explanation:
From the question given above, the following data were obtained:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity can simply be defined as the mole of solute per unit litre of the solution. Mathematically, it can be expressed as:
Molarity = mole of solute /Volume of solution
With the above formula, we can obtain the molarity of the solution as follow:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity = mole of solute /Volume of solution
Molarity = 9 / 3
Molarity = 3 mol/L = 3.0 M
Thus, the molarity of the solution is 3 M