Answer:
![[I_2]=[Br]=0.31M](https://tex.z-dn.net/?f=%5BI_2%5D%3D%5BBr%5D%3D0.31M)
Explanation:
Hello there!
In this case, according to the given information, it is possible for us to set up the following chemical equation at equilibrium:

Now, we can set up the equilibrium expression in terms of x (reaction extent) whereas the initial concentration of both iodine and bromine is 0.5mol/0.250L=2.0M:
![K=\frac{[IBr]^2}{[I_2][Br_2]} \\\\1.2x10^2=\frac{(2x)^2}{(2.0-x)^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BI_2%5D%5BBr_2%5D%7D%20%5C%5C%5C%5C1.2x10%5E2%3D%5Cfrac%7B%282x%29%5E2%7D%7B%282.0-x%29%5E2%7D)
Thus, we solve for x as show below:

Therefore, the concentrations of both bromine and iodine are:
![[I_2]=[Br]=2.0M-1.69M=0.31M](https://tex.z-dn.net/?f=%5BI_2%5D%3D%5BBr%5D%3D2.0M-1.69M%3D0.31M)
Regards!
When warm air rises, cooler air will move in to replace it, so wind often moves from colder areas to warmer areas. The greater the difference between the high and low pressure or the shorter the distance between the high and low pressure areas, the faster the wind will blow
So the correct answer will be:
When a high and a low pressure air mass are far apart, air moves slowly from high to low pressure
Gibbous refers to the moon when it is more than half full but not completely full. This results in half a circle with a smaller arc on the opposite side. This makes a weird shaped “hump” on that side which is what the humpback means.
Answer:
The last option:
- NH₃ (aq) + H⁺ (aq) → NH₄⁺ (aq)
Explanation:
1) Word equation
- Aqueous ammonia + nitric acid → aqueous ammonium nitrate
2) Chemical (molecular) equation
- NH₃ (aq) + HNO₃ (aq) → NH₄ NO₃
3) Ionization reactions
Write the dissociation of the soluble ionic compounds:
4) Total ionic equation:
- NH₃ (aq) + H⁺ (aq) + NO₃⁻ (aq) → NH₄⁺ (aq) + NO₃⁻ (aq)
5) Net ionic equation
You must cancel the spectator ions, which are those ions that are repeated in both reactant and product sides, i.e. NO₃⁻. They are name spectator because they do not participate (change) during the reaction.
- NH₃ (aq) + H⁺ (aq) → NH₄⁺ (aq)
And that is the last choice of the list.