1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
n200080 [17]
3 years ago
15

a seismic wave has an amplitude of 0.012 Meters.If the amplitude of this wave reduces to 0.006 meters, what happens to the energ

y associated with this wave?
Physics
1 answer:
irina1246 [14]3 years ago
5 0

Answer:The energy of the wave by a factor of 4

Explanation:

You might be interested in
The water in a river flows uniformly at a constant speed of 2.50 m/s between parallel banks 80.0 m apart. You are to deliver a p
NISA [10]

Answer:

a)  The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) 133.33 m

c) 53.13°

d) 106.67 m

Explanation:

a) The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) velocity = distance * time

Let the velocity of the swimmer be v_{s} = 1.5 m/s

The separation of the two sides of the river, d = 80 m

The time taken by the swimmer to get to the other end of the river bank,

t = \frac{d}{v_{s} }

t = 80/1.5

t = 53.33 s

The swimmer will be carried downstream by the river through a distance, s

Let the velocity of the river be v_{r} = 2.5 m/s

S = v_{r} t

S = 53.33 * 2.5

S = 133.33 m

c) To minimize the distance traveled by the swimmer, his resultant velocity must be perpendicular to the velocity of the swimmer relative to water

That is ,

cos \theta = \frac{v_{s} }{v_{r} } \\cos \theta = 1.5/2.5\\cos \theta = 0.6\\\theta = cos^{-1} 0.6\\\theta = 53.13^{0}

d) Downstream velocity of the swimmer, v_{y} = v_{s} sin \theta\\

v_{y} = 1.5 sin 53.13\\v_{y} = 1.2 m/s

The vertical displacement is given by, y = v_{y} t

80 = 1.2 t

t = 80/1.2

t = 66.67 s

the horizontal speed,

v_{x} = 2.5 - 1.5cos53.13\\v_{x} = 1.6 m/s

The downstream horizontal distance of the swimmer, x = v_{x} t

x = 1.6 * 66.67

x = 106.67 m

7 0
3 years ago
Two 0.20-kg balls, moving at 4 m/s east, strike a wall. Ball A bounces backwards at the same speed. Ball B stops. Which statemen
muminat

Answer:

Option A

Explanation:

From the question we are told that:

Mass m=0.20kg

Velocity v=4m/s

Generally the equation for momentum for Ball A is mathematically given by

Initial Momentum

 M_{a1}=mV

 M_{a1}=0.2*4

 M_{a1}=0.8

Final Momentum

 M_{a2}=-0.8kgm/s

Therefore

 \triangle M_a=-1.6kgm/s

Generally the equation for momentum for Ball B is mathematically given by

Initial Momentum

 M_{b1}=mV

 M_{b1}=0.2*4

 M_{b1}=0.8

Final Momentum

 M_{b2}=-0 kgm/s

Therefore

 |\triangle M_a|>|\triangle Mb|

Option A

4 0
3 years ago
Convert 25 cm to km using the method of dimensional analysis
pogonyaev

25 x 10^-5
= 0.00025

25 cm
= 0.00025 km
7 0
3 years ago
Read 2 more answers
What is the gravitational potential energy of a 0.550-kg projectile flying with 335 m/s, 72 meters above the ground?
Fofino [41]

Answer:

GPE = 388.08 Joules.

Explanation:

Given the following data;

Mass = 0.550kg

Speed = 335 m/s

Height = 72 meters

We know that acceleration due to gravity, g is equal to 9.8 m/s²

To find the gravitational potential energy;

Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.

Mathematically, gravitational potential energy is given by the formula;

G.P.E = mgh

Where;

G.P.E represents potential energy measured in Joules.

m represents the mass of an object.

g represents acceleration due to gravity measured in meters per seconds square.

h represents the height measured in meters.

Substituting into the formula, we have;

G.P.E = 0.550 * 9.8 * 72

GPE = 388.08 Joules.

4 0
3 years ago
Consider a variety of colors of visible light (say 400 nm to 700 nm) falling onto a pair of slits.
babymother [125]

Answer:

Explanation:

The relationship between angle and wavelength for maxima and minima in Young's double slit experiment is given by

For constructive interference

d\sin \theta =m\lambda

For Destructive interference

d\sin \theta =(m+\frac{1}{2})\lambda

where \lambda =wavelength

d=slit\ width

m=order of maxima and minima

for second order maxima i.e. m=2

For smallest separation taking \lambda =400 nm, \theta =90^{\circ}

d\sin 90=2\times 400\times 10^{-9}

d=0.8\times 10^{-6}

d=0.8\mu m

   

6 0
3 years ago
Other questions:
  • Scientific models have two basic types. Please select the best answer from the choices provided T F
    8·1 answer
  • The Earth rotates on its axis every __________ and revolves around the Sun every __________.
    15·2 answers
  • On another planet, a marble is released from rest at the top of a high cliff. It falls 4.00 m in the first 1 s of its motion. Th
    15·1 answer
  • a particle moves along the x axis with an acceleration of a=18t, where a has units if m/s2. if the particle at time t=0 is at th
    10·1 answer
  • A wire runs left to right and carries a current in the direction shown.
    7·2 answers
  • Sentence A: At the same time, teachers will benefit from teaching fewer students per semester and gaining more one-on-one time w
    9·2 answers
  • Within a period of the periodic table, how do the properties of the elements vary?
    12·1 answer
  • You have a 12 volt battery and placed across a 6 ohm resistor, what will the current be?​
    12·2 answers
  • Which would most likely form a homogenous mixture?
    7·2 answers
  • A football player kicks a ball with an initial velocity of 15 m/s at an angle of 43° above the horizontal. Approximately,
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!