First of all Longitudinal waves is a matter in the medium that moves parallel to the direction of the wave travels.
1st example: sound travels parallel.
2nd example: when you talk you will here your voice again. because all the frequency bounce back to you.
In the other hand Transverse wave matter in the medium moves perpendicular to direction the wave travels.
For example: light is a good example of transverse wave.
Answer:
x=2d
Explanation:
initial stretch in the spring is d
so using Hook's law
at equilibrium position
k×d=mg
where k= spring constant
m= mass of fish
g= acceleration due to gravity.
d=mg/k ................ (1)
in second case by energy conservation
1/2 kx^2=mgx
x=2mg/k
using equation 1
x=2d
Answer:
Fundamental frequency in the string will be 25 Hz
Explanation:
We have given length of the string L = 1.2 m
Speed of the wave on the string v = 60 m/sec
We have to find the fundamental frequency
Fundamental frequency in the string is equal to
, here v is velocity on the string and L is the length of the string
So frequency will be equal to 
So fundamental frequency will be 25 Hz
Answer:
The tangential velocity of a rotating object is:
v = r*w
where r is the radius, and w is the angular velocity.
w = 2*pi*f
where f is the frequency.
We know that the record plater does 11 revolutions in 20 seconds, then it does:
11 rev/20s = 0.55 rev/s = f
then we have:
w = 2*pi*0.55 s^-1 = 2*3.14*0.55 s^-1 = 3.454 s^-1
The radius of a record player is really variable, it is around 10 inches, so i will use r = 10in, which is the rotating part of the record player.
then the tangential velocity is:
v = 10in*3.454 s^-1 = 34.54 in/s