Answer:
Maximum weight that can be lifted = 18,000 N
Explanation:
Given:
Cross-sectional area of input (A1) = 0.004 m²
Cross-sectional area of the output (A2) = 1.2 m
²
Force (F) = 60 N
Computation:
Pressure on input piston (P1) = F / A1
Assume,
Maximum weight lifted by piston = W
Pressure on output piston (P2) = W / A2
We, know that
P1 = P2
[F / A1] = [W / A2]
[60 / 0.004] = [W / 1.2]
150,00 = W / 1.2
Weight = 18,000 N
Maximum weight that can be lifted = 18,000 N
Density is a physical
property which describes the mass of a substance per unit of volume of the substance.
It is expressed as Density = m / V and it has units like g/cm^3. We use the
density given to solve the problem.
<span> Volume of the tank = 8 fishes / 0.2 fish / ft</span><span>³</span>
<span>Volume of the tank = 40 ft</span><span>³</span>
Answer:
Yes there is if number of bulb is high the bulbs wouldn't glow much brighter
Explanation:
Answer:
ΔVab = Ed
ΔVab = Va-Vb = Va-V0 = Va
E = Va/ d
= 413V / 0.0795 m
= 5194.97 V/M
Explanation:
the potential difference between two uniform plates is calculated by the formula of electric field.
In order to make things easier to describe and explain, let's call
the resistance of each bulb 'R', and the battery voltage 'V'.
a). In series, the total resistance is 3R.
In parallel, the total resistance is R/3.
Changing from series to parallel, the total resistance of the circuit
decreases to 1/9 of its original value.
b). In series, the total current is V / (3R) .
In parallel, the total current is 3V / R .
Changing from series to parallel, the total current in the circuit
increases to 9 times its original value.
c). In series, the power dissipated by the circuit is
(V) · V/3R = V² / 3R .
In parallel, the power dissipated by the circuit is
(V) · 3V/R = 3V² / R .
Changing from series to parallel, the power dissipated by
the circuit (also the power delivered by the battery) increases
to 9 times its original value.