Answer:
a. Cylinder head
b. Exhaust valve
c. Engine block
d. Stroke
e. Piston
f. Intake valve
g. Cylinder
h. Combustion chamber
i. Crankshaft
j. Spark plug
Explanation:
If you don’t believe me, look up a diagram of an internal combustion engine.
it's how much it weighs and how much force is pushing on it like a egg if i drop it the weigh can cause it to break and how much force the gravity is pushing on it.
Let R be radius of Earth with the amount of 6378 km h = height of satellite above Earth m = mass of satellite v = tangential velocity of satellite
Since gravitational force varies contrariwise with the square of the distance of separation, the value of g at altitude h will be 9.8*{[R/(R+h)]^2} = g'
So now gravity acceleration is g' and gravity is balanced by centripetal force mv^2/(R+h):
m*v^2/(R+h) = m*g' v = sqrt[g'*(R + h)]
Satellite A: h = 542 km so R+h = 6738 km = 6.920 e6 m g' = 9.8*(6378/6920)^2 = 8.32 m/sec^2 so v = sqrt(8.32*6.920e6) = 7587.79 m/s = 7.59 km/sec
Satellite B: h = 838 km so R+h = 7216 km = 7.216 e6 m g' = 9.8*(6378/7216)^2 = 8.66 m/sec^2 so v = sqrt(8.32*7.216e6) = 7748.36 m/s = 7.79 km/sec
Answer:
The time taken by the duck to cross the lake is, t= 4 s
Explanation:
Given data,
The initial speed of the ducks, u = 3 m/s
The final speed of the ducks, v = 7 m/s
The acceleration of the duck, a = 1 m/s²
The formula for the acceleration is,
a = (v - u) / t
∴ t = (v - u) / a
Substituting the given values in the above equation,
t = (7 - 3) / 1
= 4 s
Hence, the time taken by the duck to cross the lake is, t= 4 s
So the acceleration of gravity is 9.8 m/s so that’s how quickly it will accelerate downwards. You can use a kinematic equation to determine your answer. We know that initial velocity was 19 m/s, final velocity must be 0 m/s because it’s at the very top, and the acceleration is -9.8 m/s. You can then use this equation:
Vf^2=Vo^2+2ax
Plugging in values:
361=19.6x
X=18 m