Answer:
Correct answer: Third statement P = 4900 W
Explanation:
Given:
m = 500 kg the mass of the elevator
h = 10 m reached height after t = 10 seconds
P = ? power of the motor
The formula for the calculating power of the motor is:
P = W / t
since work is a measure of change in this case of potential energy then it is:
W = ΔEp = Ep - 0 = Ep
In this case we must take g = 9.81 m/s²
Ep = m g h = 500 · 9.81 · 10 = 49,050 W ≈ 49,000 W
Ep ≈ 49,000 W
P = Ep / t = 49,000 / 10 = 4,900 W
P =4,900 W
God is with you!!!
Gravitational potential energy can be calculated using the formula:

Where:
PEgrav = Gravitational potential energy
m= mass
g = acceleration due to gravity
h = height
On Earth acceleration due to gravity is a constant 9.8 but since the scenario is on Mars, the pull of gravity is different. In this case, it is 3.7, so we will use that for g.
So put in what you know and solve for what you don't know.
m = 10kg
g = 3.7m/s^2
h = 1m
So we put that in and solve it.


<span>The maximum possible efficiency, i.e the efficiency of a Carnot engine , is give by the ratio of the absolute temperatures of hot and cold reservoir.
η_max = 1 - (T_c/T_h)
For this engine:
η_max = 1 - [ (20 +273)K/(600 + 273)K ] = 0.66 = 66%
The actual efficiency of the engine is 30%, i.e.
η = 0.3 ∙ 0.664 = 0.20 = 20 %
On the other hand thermal efficiency is defined as the ratio of work done to the amount of heat absorbed from hot reservoir:
η = W/Q_h
So the heat required from hot reservoir is:
Q_h = W/η = 1000J / 0.20 = 5000J</span>
Answer:
Explanation:
Given
charge of first body 
charge of second body 
Particle 1 is at origin and particle 2 is at 
third Particle which charge +q must be placed left of
because it will repel the q charge while
will attract it
suppose it is placed at a distance of x m








Answer:
Gravity provides a downward force, resulting in the diver going downward. They speed up like any falling object would, the pull of gravity is a dominant force. (There is a drag force – as a result of moving through the air.)