1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kicyunya [14]
3 years ago
12

What is the difference between 3.15 m and 2.006 m with the correct number of significant figures

Physics
2 answers:
snow_lady [41]3 years ago
5 0
The differences is 1.144
tekilochka [14]3 years ago
4 0

Answer:

S = 1.144

Explanation:

As we know that when we add or subtract two or more numbers then the final result must have same number of precision as that of numbers given in the problem

here we have

S = 3.15 - 2.006

so we have to give our result with 3 digits after decimal

so we will have

S = 1.144

since it must have more precise digits so correct answer after subtraction must be

S = 1.144

You might be interested in
What is the frequency of a wave?
Paladinen [302]
The answer should be the number, or amount, of cycles that occur in a given time. Frequency is basically Hertz. Frequency is the number of waves that pass through a certain point every second. I hope that I was able to answer your question.
Peace out!

- Hershy103
6 0
3 years ago
Read 2 more answers
The water in a river flows uniformly at a constant speed of 2.50 m/s between parallel banks 80.0 m apart. You are to deliver a p
NISA [10]

Answer:

a)  The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) 133.33 m

c) 53.13°

d) 106.67 m

Explanation:

a) The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) velocity = distance * time

Let the velocity of the swimmer be v_{s} = 1.5 m/s

The separation of the two sides of the river, d = 80 m

The time taken by the swimmer to get to the other end of the river bank,

t = \frac{d}{v_{s} }

t = 80/1.5

t = 53.33 s

The swimmer will be carried downstream by the river through a distance, s

Let the velocity of the river be v_{r} = 2.5 m/s

S = v_{r} t

S = 53.33 * 2.5

S = 133.33 m

c) To minimize the distance traveled by the swimmer, his resultant velocity must be perpendicular to the velocity of the swimmer relative to water

That is ,

cos \theta = \frac{v_{s} }{v_{r} } \\cos \theta = 1.5/2.5\\cos \theta = 0.6\\\theta = cos^{-1} 0.6\\\theta = 53.13^{0}

d) Downstream velocity of the swimmer, v_{y} = v_{s} sin \theta\\

v_{y} = 1.5 sin 53.13\\v_{y} = 1.2 m/s

The vertical displacement is given by, y = v_{y} t

80 = 1.2 t

t = 80/1.2

t = 66.67 s

the horizontal speed,

v_{x} = 2.5 - 1.5cos53.13\\v_{x} = 1.6 m/s

The downstream horizontal distance of the swimmer, x = v_{x} t

x = 1.6 * 66.67

x = 106.67 m

7 0
3 years ago
If you were doing a research study on sleep and student achievement, which
jasenka [17]
Letter D: The amount of sleep a student gets affects student achievement
6 0
3 years ago
Read 2 more answers
A small box of mass m1 is sitting on a board of mass m2 and length L. The board rests on a frictionless horizontal surface. The
Nadusha1986 [10]

Answer:

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}

Explanation:

The Newton’s second law states that the net force on an object is the product of mass of the object and final acceleration of the object. The expression of newton’s second law is,

\sum {F = ma}

Here, is the sum of all the forces on the object, mm is mass of the object, and aa is the acceleration of the object.

The expression for static friction over a horizontal surface is,

F_{\rm{f}}} \leq {\mu _{\rm{s}}}mg

Here, {\mu _{\rm{s}}} is the coefficient of static friction, mm is mass of the object, and g is the acceleration due to gravity.

Use the expression of static friction and solve for maximum static friction for box of mass {m_1}

Substitute  for in the expression of maximum static friction {F_{\rm{f}}} = {\mu _{\rm{s}}}mg

{F_{\rm{f}}} = {\mu _{\rm{s}}}{m_1}g

Use the Newton’s second law for small box and solve for minimum acceleration aa to pull the box out.

Substitute  for , [/tex]{m_1}[/tex] for in the equation .

{F_{\rm{f}}} = {m_1}a

Substitute {\mu _{\rm{s}}}{m_1}g for {F_{\rm{f}}} in the equation {F_{\rm{f}}} = {m_1}a

{\mu _{\rm{s}}}{m_1}g = {m_1}a

Rearrange for a.

a = {\mu _{\rm{s}}}g

The minimum acceleration of the system of two masses at which box starts sliding can be calculated by equating the pseudo force on the mass with the maximum static friction force.

The pseudo force acts on in the direction opposite to the motion of the board and the static friction force on this mass acts in the direction opposite to the pseudo force. If these two forces are cancelled each other (balanced), then the box starts sliding.

Use the Newton’s second law for the system of box and the board.

Substitute for for in the equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right)a

Substitute for in the above equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

There is no friction between the board and the surface. So, the force required to accelerate the system with the minimum acceleration to slide the box over the board is equal to total mass of the board and box multiplied by the acceleration of the system.

5 0
3 years ago
Please help me with my quiz
Oduvanchick [21]

Answer:

matter: A

data: E

variable: C

Controlled: D

Physical: B

Explanation:

8 0
3 years ago
Other questions:
  • 4) You have a spring-loaded air rifle. When it is loaded, the spring is
    7·1 answer
  • Which of the following is not a possible environmental consequence of urban sprawl?
    14·1 answer
  • The process that uses a half-life in its computation is
    6·1 answer
  • Which is true about carbon-12 compared with carbon-13
    5·1 answer
  • What are the similarities in the 3 types of waves
    6·1 answer
  • Hey girls and guys.. I AM TAKING MY FINAL RN IN CLASS!! I NEED HELP AND WUICKLY
    15·1 answer
  • Which of the following is an accurate comparison of the weight of an astronaut on the moon and the Earth? The weight of the astr
    8·2 answers
  • Laura is skydiving when at a certain altitude she opens her parachute and
    15·1 answer
  • What is the size of filter paper​
    5·2 answers
  • Planetesmals are made from
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!