Given :
Mass of water, m = 2 grams.
The temperature of water drops from 31 °C to 29 °C .
The specific heat of water is 4.184 J/(g • °C).
To Find :
Amount of heat lost in this process.
Solution :
We know, heat lost is given by :

Therefore, amount of heat lost in this process is 16.736 J.
1. Frequency 2. measure from trough to trough
To solve this problem it is necessary to apply the concepts related to the Moment. The moment in terms of the Force and the time can be expressed as

F = Force

At the same time the moment can be expressed in terms of mass and velocity, mathematically it can be given as

Where
m = Mass
Change in velocity
Our values are given as

By equating the two equations we can find the Force,



Therefore, the net average force will be:

The negative symbol indicates that the direction of the force is upwards.
Answer:
The<u> heat transfer </u>model showed convection.
In the convection model, the red water on the bottom of the beaker <u>is hot</u>
This means that the water at the bottom of the beaker was <u> less dense than </u>the water near the top of the beaker.
Explanation:
<em>Convection</em> is the transference of heat energy by the movement (translation) of the particles of fluid (liquids or gases).
When the water on the bottom of the beaker is heated, it expands and becomes less dense.
The water near the top of the beaker is cold which makes it denser than the water at the bottom of the beaker.
Thus, the hot water from the bottom of the beaker will ascend toward the top of the beaker, while the cold water on top will descend toward the bottom. As long, as there is a difference of temperature between the water on the bottom and on top of the beaker, there will be a continuous movement of the particles: cold particles from the top replace hot particles from the bottom that ascend, and when the cold particles are heated they will ascend and will be replaced by new cold particles. This continuous translation of hot and cold particles in fluids is the model of heat transfer by convection.