1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nignag [31]
3 years ago
7

An airplane is flying at a speed of 200 m/s in level flight at an altitude of 800 m. A package is to be dropped from the airplan

e to land on a target on the ground. At what horizontal distance away from the target should the package be released so that it lands on the target?
Physics
1 answer:
MArishka [77]3 years ago
7 0

Answer:

2560m or 2.56km (rounded to 3 significant figures)

Explanation:

First, list all known and desired values/variables (initial vertical velocity is 0 as the plane is kept level and vertical acceleration is just gravity):

Vertical \ velocity \ (\frac{m}{s} ) =  u_{v} = 0 \\\\ Horizontal \ velocity \ (\frac{m}{s} ) =  u_{h} = 200\\\\ Vertical \ acceleration \ (\frac{m}{s^{2} } ) =  a_{v} =  9.8 \\\\ Horizontal \ acceleration \ (\frac{m}{s^{2} } ) =  a_{h} =  0 \\\\ Vertical \ displacement \ (m) = s_{v} = 800 \\\\ Horizontal \ displacement \ (m) = s_{h}

The horizontal displacement is going to be the distance travelled, horizontally of course, once the package is released;

First thing to understand is that the vertical and horizontal components are to be dealt with separately because they don't affect each other;

Since there is no horizontal acceleration (ignoring air resistance), we simply require a velocity and time to find the horizontal displacement, using the formula v = d/t (or speed = distance/time);

What we have is the horizontal velocity but we don't have the time taken;

One thing we know is that the time elapsed for the vertical fall of 800m and for the horizontal displacement must be the same;

What we do, therefore, is find the time taken for the vertical displacement using the formula, s = ut + ¹/₂·at², since we know the vertical velocity, height and acceleration:

800 = (0)t + ¹/₂·(9.8)t²

800 = 4.9t²

t² = 163.26...

t = 12.77...

We now have the time taken for the vertical fall and the horizontal displacement, we can use this with the horizontal velocity we know already and get the horizontal displacement:

u_{h} = \frac{s_{h} }{t} \\\\ 200 = \frac{s_{h} }{12.77...} \\\\ s_{h} = 200(12.77...) \\\\ s_{h} = 2555.5...

You might be interested in
If you are following a car and also being tailgated by another vehicle, your best option would be to.. a. Increase the following
Pie

Answer:

Your answer here is D

Explanation:

Slowly pressing your breaks will help ensure you are not hit by the other car. If they hit you its their fault. Hope this helps :)!

7 0
3 years ago
Read 2 more answers
if a car that is 100 feet in front of you on route 70 west slams on the brakes while you are traveling 65 miles per hour (95 fee
fenix001 [56]

Answer:

t = 1.05 s

Explanation:

Given,

The distance between your vehicle and car, 100 ft

The constant speed of your vehicle, u = 95 ft/s

Since, the velocity is constant, a =0

If the car stopped suddenly, time left for you to hit the brake, t = ?

Using the second equation of motion,

                           S = ut + ½ at²

Substituting the given values in the equation

                           100 = 95 x t

                             t = 100/95

                               = 1.05 s

Hence, the time left for you to hit the brakes and stop before rear ending them, t = 1.05 s

5 0
3 years ago
The ancient Egyptians used the stars to _____.
OleMash [197]

Answer:

predict annual flooding

4 0
3 years ago
Read 2 more answers
A helicopter has blades of length 4.0 m rotating at 3.0 rev/s in a horizontal plane.If the vertical component of the Earth’s mag
VARVARA [1.3K]

Answer:

Induced emf, \epsilon=9.79\times 10^7\ volts

Explanation:

Given that,

Length of the helicopter, l = 4 m

Angular speed of the helicopter, \omega=3\ rev/s=18.84\ rad/s

The vertical component of the Earth’s magnetic field is, B=6.5\times 10^5\ T

We need to find the induced emf between the tip of a blade and the hub. The induced emf in terms of angular velocity of an rotating object is given by :

\epsilon=\dfrac{1}{2}B\omega l^2

\epsilon=\dfrac{1}{2}\times 6.5\times 10^5\times 18.84\times (4)^2

\epsilon=9.79\times 10^7\ volts

So, the induced emf between the tip of a blade and the hub is \epsilon=9.79\times 10^7\ volts. Hence, this is the required solution.

5 0
3 years ago
Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
netineya [11]

Answer: m \frac{d}{dt}v_{(t)}

Explanation:

In the image  attached with this answer are shown the given options from which only one is correct.

The correct expression is:

m \frac{d}{dt}v_{(t)}

Because, if we derive velocity v_{t} with respect to time t we will have acceleration a, hence:

m \frac{d}{dt}v_{(t)}=m.a

Where m is the mass with units of kilograms (kg) and a with units of meter per square seconds \frac{m}{s}^{2}, having as a result kg\frac{m}{s}^{2}

The other expressions are incorrect, let’s prove it:

\frac{m}{2} \frac{d}{dx}{(v_{(x)})}^{2}=\frac{m}{2} 2v_{(x)}^{2-1}=mv_{(x)} This result has units of kg\frac{m}{s}

m\frac{d}{dt}a_{(t)}=ma_{(t)}^{1-1}=m This result has units of kg

m\int x_{(t)} dt= m \frac{{(x_{(t)})}^{1+1}}{1+1}+C=m\frac{{(x_{(t)})}^{2}}{2}+C This result has units of kgm^{2} and C is a constant

m\frac{d}{dt}x_{(t)}=mx_{(t)}^{1-1}=m This result has units of kg

m\frac{d}{dt}v_{(t)}=mv_{(t)}^{1-1}=m This result has units of kg

\frac{m}{2}\int {(v_{(t)})}^{2} dt= \frac{m}{2} \frac{{(v_{(t)})}^{2+1}}{2+1}+C=\frac{m}{6} {(v_{(t)})}^{3}+C This result has units of kg \frac{m^{3}}{s^{3}} and C is a constant

m\int a_{(t)} dt= \frac{m {a_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{4}} and C is a constant

\frac{m}{2} \frac{d}{dt}{(v_{(x)})}^{2}=0 because v_{(x)} is a constant in this derivation respect to t

m\int v_{(t)} dt= \frac{m {v_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{2}} and C is a constant

6 0
3 years ago
Other questions:
  • Isabela is an astronomer studying stars A and B. Star A is farther away from Isabela and yet when Isabela observes the stars, th
    13·1 answer
  • Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, a
    8·2 answers
  • Ask Your Teacher An electric utility company supplies a customer's house from the main power lines (120 V) with two copper wires
    11·1 answer
  • Can you correctly identify facts about these two historical models of the solar system?
    9·1 answer
  • Astronomers observe two separate solar systems each consisting of a planet orbiting a sun. The two orbits are circular and have
    14·1 answer
  • You kick a soccer ball with a speed of 18 m/s at an angle of 43. How long does it take the the ball to reach the top of its traj
    5·1 answer
  • A golfer gives a ball a maximum initial speed of 51.5 m/s. how far does it go
    10·1 answer
  • 8. A car moved 20 km East and 70 km West.<br> What is the distance?
    7·2 answers
  • Momentum is most similar to which other physics concept?
    11·1 answer
  • Can someone plz help me on this, it would me alot to me <br> thx
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!