Answer:
d=510.2m
t=10.2s
Explanation:
The formulas for accelerated motion are:

From them we can get
.
We have:

And substitute:

We multiply both sides by 2a, and continue:

Being d the displacement
, we have 
For our exercise, we will write this as:

And taking upwards direction positive and imposing final velocity 0m/s (for maximum height), we have:

For the time we use:

Catalysts
a catalyst is something added to a reaction that speeds it up (or lowers the activation energy)
increasing the temp would speed up the whole reaction but not lower the activation energy
so B.
Gave him good advice to others
Seatbelt- strapped in egg
air bag- cushion around the egg
brakes- parachute(bag that helps the egg go down slower)
Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m