Answer:
This depends on what angle they are approaching each other before they collided.The two simple cases are if they are running in the same direction or opposite direction from each other. For either case, use the conservation of momentum equation to solve: M_total*V_result = M1*V1 + M2*V2
Explanation:
Here are two possible solutions.
Head-on collision: M1=78, V1=8.5, M2=72, V2=-7.5 (that's negative because he's running the other way), M_total = 78+72 = 150, so V_result = (78*8.5 - 72*7.5)/150 = 0.82 m/s. Sanity check, they weigh about the same and so most of their velocity should cancel out.
Running the same way: change the sign of V2 to positive so V_result = (78*8.5 + 72*7.5)/150 = 8.02 m/s. Sanity check, they weigh about the same and the resultant speed is between the two starting velocities.
<em>hope it helps:)</em>
Mass of the car = 1200 kg
Mass of the truck = 2100 kg
Total mass of car and truck = 2100 + 1200 = 3300 kg
Since, the car pushes the truck. Hence, they will move together and will have same acceleration.
Let the acceleration be a.
According to Newton's second law:
F(net) = ma
F = 4500 N
4500 = 3300 × a

a = 1.36 m/s^2
Let the force applied by the car on truck be F.
F = F(net) on the truck
F = ma
F = 2100 × 1.36
F = 2856 N
Hence, the force applied by the car on the truck is 2856 N
Answer:
Velocity of wave = 2322 m /sec
Explanation:
We know that, Velocity of wave v = n λ
Given, n
= 540 Hz, λ=4.3 m
, v = ?
Putting the value of n and λ
Velocity of wave = 540 x 4.3 = 2322 m /sec
Answer: It had been 2.48 s before the start of the 9.0 s interval
Explanation: Please see the attachments below
Answer:
Could you please add the events
Explanation:
if not I could give a brief explanation of what happens in the phase and you could just eliminate?