1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry_Shevchenko [17]
3 years ago
12

Four charges with equal magnitudes of 10.6 × 10-12 C are placed at the corners of a rectangle. The lengths of the sides of the r

ectangles are 3.99 cm and 7.79 cm. Find the magnitude of the electric field at the center of the rectangle in Figures a and b.

Physics
1 answer:
cricket20 [7]3 years ago
5 0

Answer:

Figure a. E_net = 99.518 N/C

Figure b. E_net = 177.151 N / C

Explanation:

Given:

- Attachment for figures missing in the question.

- The dimensions for rectangle are = 7.79 x 3.99 cm

- All four charges have equal magnitude Q = 10.6*10^-12 C

Find:

Find the magnitude of the electric field at the center of the rectangle in Figures a and b.

Solution:

- The Electric field generated by an charged particle Q at a distance r is given by:

                                         E = k*Q / r^2

- Where, k is the coulomb's constant = 8.99 * 10^9

Part a)

- First we see that the charges +Q_1 and +Q_3 produce and electric field equal but opposite in nature. So the sum of Electric fields:

                                 E_1 + E_3 = 0

- For Charges -Q_2 and +Q_4, they are equal in nature but act in the same direction towards the negative charge -Q_2. Hence, the net Electric Field at center of the rectangle can be given as:

                                  E_net = E_2 + E_4

                                  E_2 = E_4

                                  E_net = 2*E = 2*k*Q / r^2

- The distance r from each corner to mid-point of the rectangle is constant. It can be evaluated by Pythagoras Theorem as follows:

                                  r = sqrt ( (7.79/200)^2 + (3.99/200)^2 )

                                  r = sqrt ( 1.9151*10^-3 ) = 0.043762 m

- Plug the values in the E_net expression developed above:

                                  E_net = 2*(8.99*10^9)*(10.6*10^-12) / 1.9151*10^-3

                                 E_net = 99.518 N/C

Part b)

- Similarly for Figure b, for Charges -Q_2 and +Q_4, they are equal in nature but act in the same direction towards the negative charge -Q_2. Also, Charges -Q_1 and +Q_3, they are equal in nature but act in the same direction towards the negative charge -Q_1. These Electric fields are equal in magnitude to what we calculated in part a).

- To find the vector sum of two Electric Fields E_1,3 and E_2,4 we see the horizontal components of each cancels each other out. While the vertical components E_1,3 and E_2,4 are equal in magnitude and direction.

Hence,

                                  E_net = 2*E_part(a)*cos(Q)

- Where, Q is the angle between resultant, vertical in direction, and each of the electric field. We can calculate Q using trigonometry as follows:

                                  Q = arctan ( 3.99 / 7.79 ) = 27.12 degrees.

- Now, compute the net electric field E_net:

                                  E_net = 2*(99.518)*cos(27.12)

                                  E_net = 177.151 N / C

               

You might be interested in
In the Bohr model of hydrogen, the electron moves in a circular orbit around the nucleus. (a) Determine the orbital frequency of
Airida [17]

Answer:

(a) 6.567 * 10^15 rev/s or hertz

(b) 8.21 * 10^14 rev/s or hertz

Explanation:

Fn= 4π^2k^2e^4m * z^2/(h^3*n^3)

Where Fn is frequency at all levels of n.

Z = 1 (nucleus)

e = 1.6 * 10^-19c

m = 9.1 * 10^-31 kg

h = 6.62 * 10-34

K = 9 * 10^9 Nm2/c2

(a) for groundstate n = 1

Fn = 4 * π^2 * (9*10^9)^2*(1.6*10^-19)^4* (9.1 * 10^-31) * 1 / (6.62 * 10^-31)^3 = 6.567 * 10^15 rev/s

(b) first excited state

n = 1

We multiple the groundstate answer by 1/n^3

6.567 * 10^15 rev/s/ 2^3

F2 = 8.2 * 10^ 14 rev/s

3 0
3 years ago
a 230 kg roller coaster reaches the top of the steepest hill with a speed of 6.2 km/h. It then descends the hill, which is at an
igor_vitrenko [27]

Answer: 81.619 kJ

Explanation:

Given

Mass of roller coaster is m=230\ kg

It reaches the steepest hill with speed of u=6.2\ km/h\ or \ 1.72\ m/s

Hill to bottom is 51 m long with inclination of 45^{\circ}

Height of the hill is h=51\sin 45^{\circ}=36.06\ m

Conserving energy to get kinetic energy at bottom

Energy at top=Energy at bottom

\Rightarrow K_t+U_t=K_b+U_b\\\Rightarrow \dfrac{1}{2}mu^2+mgh=K_b+0\\\\\Rightarrow K_b=0.5\times 230\times 1.72^2+230\times 9.8\times 36.06\\\Rightarrow K_b=340.216+81,279.24\\\Rightarrow K_b=81,619.456\ J\\\Rightarrow K_b=81.619\ kJ

8 0
2 years ago
A 241 kg mass is lifted 1.8 m. What is the potential energy of the mass (in J)?
Korolek [52]

Answer:

mass is lifted 1.8 m. What is the potential energy of the mass 4. A 100 kg

6 0
2 years ago
Read 2 more answers
Suzie Spacewalker hovers in space beside a rotating space station in outer space. Both she and the center of mass of the space s
Inga [223]

Answer:

is in the earths orbit

Explanation:

for Suzie to hover in space beside the rotating space station, she and the center  of mass of the space station are at relative rest which happens when space station is in Earth orbit, hence she is  in the earths orbit.

3 0
3 years ago
What angle is formed by the sun, the earth, and the moon during an eclipse?.
Andrew [12]

Answer:

The Sun-Earth-Moon system happens to exhibit a striking geometric coincidence, which we examine in the first problem. PROBLEM 1. To an observer on Earth, the Sun and the Moon subtend almost the same angle in the sky. The average angle is 0.52 degrees for the Moon and 0.53 degrees for the Sun.

4 0
2 years ago
Other questions:
  • What is the effect of pressure on the volume of a gas?
    6·2 answers
  • Which is true about the pressure of a fluid at a specific depth? A. It depends on the surface area of the fluid. B. It is exerte
    11·1 answer
  • PHYSICAL SCIENCE : What are the advantages and disadvantages of using nuclear energy to generate electricity?
    7·1 answer
  • At a playground, a child slides down a slide that makes a 42° angle with the horizontal direction. The coefficient of kinetic fr
    12·1 answer
  • Prefix and suffix for hydrology
    6·1 answer
  • Energy from the Sun travels to Earth as ______. a. mechanical energy a. mechanical energy b. chemical energy c. radiant energy d
    13·1 answer
  • DontBlink1196 is *HEDJL:::A:APSKDL
    11·1 answer
  • At a constant pressure, the volume of a gas doubles when the temperature in kelvins doubles. This is a statement of which gas la
    14·2 answers
  • The unit of area is a derived unit. Why?
    5·1 answer
  • Which element is LEAST likely to react with Magnesium?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!