Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Centripetal force = (mv^2)/r
so r = (mv^2)/ force = 246500 / 1100 = 224 m
a) El Niño is defined as an abnormal weather pattern caused by the warming of the Pacific Ocean near the equator, off the coast of South America. The sun warms the water near the equator, which can make more clouds and, therefore, more rain. It has detrimental effects on biodiversity leading to its large-scale loss by
warmer sea temperatures leading to plankton and fish kills in coastal waters
lower sea levels leading to exposure of underwater coral reefs, causing their loss.
To find the surface area of a single cube we first nees to take the cube root of 8cm3 which is 2.
Now we know that the length of each side is 2 and we can find the area of one side by doing 2x2 which is 4.
To find the total surface area of one cube we do 4 times 6 side giving us a total of 24cm2.
To find the total surface area of the 8 individual cubes, we multiply 24cm2 by 8 to give us a total of 192cm2.
Now to find the total surface area of the one large cube, we know that each side of one of the small cubes is 4cm2 and the large cube is set up so that there are two levels of four cubes right on top of each other. So, the total area of each side of the large cube is 4cm2 times 4 which gives us 16cm2.
Then we multiply 16cm2 by 6 sides to give us a total surface area of 96cm2.
The ratio of the surface area of the single large cube comapred to the total surface area of the single cubes is 96:192
We can further simplify this ratio:
96:192
48:96
24:48
12:24
6:12
3:6
1:2