Answer:
In particle physics, a lepton is an elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions.[1] Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutral leptons (better known as neutrinos). Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.
Blue light can knock electrons off a plate, but red light can't
Answer:
a . 0.35cm
b. 11.33cm
Explanation:
a. Given both currents are in the same direction, the null point lies in between them. Let x be distance of N from first wire, then distance from 2nd wire is 4-x
#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in between the wires:

Hence, for currents in same direction, the point is 0.35cm
b. Given both currents flow in opposite directions, the null point lies on the other side.
#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in outside the wires:
Let x be distance of N from first wire, then distance from 2nd wire is 4+x:

Hence, if currents are in opposite directions the point on x-axis is 11.33cm
The difference between speed and velocity is that the speed is a scalar quantity which means that you can say that this object has a speed of x m/s but you don't have to define its direction
while the velocity is a vector quantity which means that you have to express the velocity by which it moves in x,y and z directions and its norm is the speed
Answer:
The wall is 680 meter away from the person.
Explanation:
Given data
Speed of sound = 340 
Given that Persons said hello toward the opposite side she has an echo hello 4 seconds later means it takes 2 seconds for the sound to reach the wall & again 2 seconds to reach the persons ear.
Therefore the distance between the person & wall is
D = speed × Time
D = 340 × 2
D = 680 meter
Therefore the wall is 680 meter away from the person.