Nitrogen (around 78%), Oxygen (around 21%), and Argon (around 1%).
Hope this helps :)
Answer: I believe that it's electrons please let me know if it was right or what it was!
Hope this helps!!! Good luck!!! ;)
Answer:
287.30 g of FeCO₃
Solution:
The Balance Chemical Equation is as follow,
FeCl₂ + Na₂CO₃ → FeCO₃ + 2 NaCl
Step 1: Calculate Mass of FeCl₂ as,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 2 mol.L⁻¹ × 1.24 L
Moles = 2.48 mol
Also,
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting Values,
Mass = 2.48 mol × 126.75 g.mol⁻¹
Mass = 314.34 g of FeCl₂
Step 2: Calculate Mass of FeCO₃ formed as,
According to equation,
126.75 g (1 mole) FeCl₂ produces = 115.85 g (1 mole) FeCO₃
So,
314.34 g of FeCl₂ will produce = X g of FeCO₃
Solving for X,
X = (314.34 g × 115.85 g) ÷ 126.75 g
X = 287.30 g of FeCO₃
<h2>
brainlyest pleas</h2>
61.24 is the molar mass of a gas which has a density of 0.00249 g/mL at 20.0 degrees celcius and 744.0 mm Hg.
Explanation:
given that:
density = 0.00249 g/ml (
) or 2.49 grams/litre
P = 744 mm Hg OR 0.978 atm
T = 20 Degrees or 293.15 Kelvin
R = 0.08206 Litre atm/mole K
molar mass =?
Formula used/
PV = nRT equation 1
here n is number of moles:
n = 
putting the value of n and value of density in the equation 1:
PV =
x RT
molar mass =
x 
= density x 
= 
= 61.24 is the molar mass of the gas.
<span>The net ionic equation for the reaction of alum (KAl(SO4)2.12H2O.) and KOH is </span>the solid AlOH3 formed.