1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
3 years ago
10

If the end points are -8 and 12 what is the midpoint

Physics
1 answer:
Vlad1618 [11]3 years ago
5 0
I believe 2 is the midpoint
You might be interested in
Compute your average velocity in the following two cases: (a) You walk 50.2 m at a speed of 2.21 m/s and then run 50.2 m at a sp
Readme [11.4K]

Answer:

a) 2.87 m/s

b) 3.23 m/s

Explanation:

The avergare velocity can be found dividing the length traveled d by the total time t.

a)

For the first part we easily know the total traveled length which is:

d = 50.2 m + 50.2 m = 100.4 m

The time can be found dividing the distance by the velocity:

t1 = 50.2 m / 2.21 m/s = 22.7149 s

t2 = 50.2 m / 4.11 m/s = 12.2141 s

t = t1 +t2 = 34.9290 s

Therefore, the average velocity is:

v = d/t =2.87 m/s

b)

Here we can easily know the total time:

t = 1 min + 1.16 min = 129.6 s

Now the distance wil be found multiplying each velocity by the time it has travelled:

d1 = 2.21 m/s * 60 s = 132.6 m

d2 = 4.11 m/s *(1.16 * 60 s) = 286.056 m

d = 418.656 m

Therefore, the average velocity is:

v = d/t =3.23 m/s

5 0
3 years ago
What is wrong with the following statement: When you exert a force on a baseball, the equal and opposite force on the ball balan
gregori [183]

Answer:

When you exert a force on a baseball, there exists an equal and opposite force on the ball therefore, the ball will accelerate in opposite direction.

Explanation:

When you hit a ball with baseball bat, the bat exerts a great force on the ball which causes the ball to accelerate in the opposite direction. It is to be noted that the mass of bat is much greater than mass of ball but the acceleration of ball is also greater than the acceleration of the bat so both bat and ball almost exert same magnitude of force but in opposite direction and as a result both bat and ball accelerate in opposite direction, the deciding factor is of course the relative force applied by the batter and the bowler.

6 0
3 years ago
What type of electromagnetic radiation is being used in the picture?
pashok25 [27]

Answer: b i think

Explanation:

6 0
3 years ago
A 100-meter sprint is a race using only the straight side of a racetrack. A 400-meter sprint is a race that makes one complete l
Shalnov [3]
Speed uses distance and velocity uses displacement in its calculation.

For 100 m race, distance = displacement. Hence speed = velocity

For 400m race, distance ≠ displacement. distance = 400m whereas displacement = 0m. Hence speed ≠ velocity
3 0
3 years ago
Read 2 more answers
You pull straight up on the string of a yo-yo with a force 0.35 N, and while your hand is moving up a distance 0.16 m, the yo-yo
jarptica [38.1K]

Answer:

a) 0.138J

b) 3.58m/S

c) (1.52J)(I)

Explanation:

a) to find the increase in the translational kinetic energy you can use the relation

\Delta E_k=W=W_g-W_p

where Wp is the work done by the person and Wg is the work done by the gravitational force

By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

Wp=(0.35N)(0.16m)=0.056J\\\\Wg=(0.062kg)(9.8\frac{m}{s^2})(0.32m)=0.19J\\\\\Delta E_k=W=0.19J-0.056J=0.138J

the change in the translational kinetic energy is 0.138J

b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

\Delta E_k=\frac{1}{2}mv_f^2-\frac{1}{2}mv_o^2

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

v_f=\sqrt{\frac{2}{m}}\sqrt{\Delta E_k+(1/2)mv_o^2}\\\\v_f=\sqrt{\frac{2}{0.062kg}}\sqrt{0.138J+1/2(0.062kg)(2.9m/s)^2}=3.58\frac{m}{s}

the new speed is 3.58m/s

c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

\frac{E_{fr}}{E_{fr}}=\frac{1/2I\omega_f^2}{1/2I\omega_o^2}=\frac{\omega_f^2}{\omega_o^2}\\\\\omega_f=\frac{v_f}{r}\\\\\omega_o=\frac{v_o}{r}\\\\\frac{E_{fr}}{E_{fr}}=\frac{v_f^2}{v_o^2}=\frac{(3.58m/s)}{(2.9m/s)^2}=1.52J

hence, the change in Er is about 1.52J times the initial rotational energy

5 0
3 years ago
Read 2 more answers
Other questions:
  • A 2.50 gram rectangular object has measurements of 22.0 mm, 13.5 mm, and 12.5 mm. what is the object's density in units of g/ml?
    10·1 answer
  • Newton’s Third Law of Motion states that when one object exerts a force on a second object, the forces are __________________.
    5·1 answer
  • A transformer has a secondary voltage of 140 volts and a secondary current of 3.5 amps. if the primary current is 10 amps, what
    13·1 answer
  • What role did gravity play in the formation of the planets?
    7·2 answers
  • What would the kinetic energy and potential energy be with the snowboarder, before during and after a jump?
    12·1 answer
  • An object is given an initial velocity. What will happen to the object if no other forces act on it?
    15·1 answer
  • In what unit do we measure force? in physics​
    5·1 answer
  • Instantaneous angular speed is: Group of answer choices the rate at which the angular acceleration is changing total angular dis
    8·1 answer
  • Hello plz I really need it
    15·1 answer
  • (e) For photons of energy 7.10 eV, what stopping potential would be required to arrest the current of photoelectrons
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!