Answer:
Explanation:
Energy of system of charges
= k q₁q₂ / r₁₂ + k q₁q₃ / r₁₃ + k q₃q₂ / r₃₂
q₁ , q₂ and q₃ are charges and r₁₂ , r₁₃ , r₃₂ are densities between them
9 x 10⁹ ( 2x2 x10⁻¹²/ .25 + 2x2 x10⁻¹²/ .25 + 2x2 x10⁻¹²/ .25 )
= 9 x 10⁹ x 3 x 16 x 10⁻¹²
= 432 x 10⁻³
= .432 J .
Answer:
a. A = 0.735 m
b. T = 0.73 s
c. ΔE = 120 J decrease
d. The missing energy has turned into interned energy in the completely inelastic collision
Explanation:
a.
4 kg * 10 m /s + 6 kg * 0 m/s = 10 kg* vmax
vmax = 4.0 m/s
¹/₂ * m * v²max = ¹/₂ * k * A²
m * v² = k * A² ⇒ 10 kg * 4 m/s = 100 N/m * A²
A = √1.6 m ² = 1.26 m
At = 2.0 m - 1.26 m = 0.735 m
b.
T = 2π * √m / k ⇒ T = 2π * √4.0 kg / 100 N/m = 1.26 s
T = 2π *√ 10 / 100 *s² = 1.99 s
T = 1.99 s -1.26 s = 0.73 s
c.
E = ¹/₂ * m * v²max =
E₁ = ¹/₂ * 4.0 kg * 10² m/s = 200 J
E₂ = ¹/₂ * 10 * 4² = 80 J
200 J - 80 J = 120 J decrease
d.
The missing energy has turned into interned energy in the completely inelastic collision
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
The velocity of shortening refers to the speed of the contraction from
the muscle shortening while lifting a load. The relationship between the
resistance and velocity of shortening is inverse. The greater the
resistance, the shorter the velocity of shortening and the smaller the
resistance, the larger the velocity of shortening.
Hopefully this help :)
The answer is B high pressure.