Answer: acid dissociation constant Ka= 2.00×10^-7
Explanation:
For the reaction
HA + H20. ----> H3O+ A-
Initially: C. 0. 0
After : C-Cx. Cx. Cx
Ka= [H3O+][A-]/[HA]
Ka= Cx × Cx/C-Cx
Ka= C²X²/C(1-x)
Ka= Cx²/1-x
Where x is degree of dissociation = 0.1% = 0.001 and c is the concentration =0.2
Ka= 0.2(0.001²)/(1-0.001)
Ka= 2.00×10^-7
Therefore the dissociation constant is
2.00×10^-7
Answer:one gram by 1oC
Explanation: you will need to know the value of water's specific heat
Answer:
D.
Explanation:
Hello,
In this case, the isomer of an organic compound is another organic compound having the same molecular formula but different structural formula, thus, the given compound's molecular formula is C₅H₈ since it is an alkyne due to the triple bond. Next, we analyze each option:
A. C₅H₁₂
B. C₅H₁₀
C. C₅H₁₀
D. C₅H₈
For that reason answer is D. based on the molecular formula as well as due to the presence of the triple bond unsaturation (alkyne as well).
Best regards.
Answer:At the molecular level, the pressure of a gas depends on the number of collisions its molecules have with the walls of the container. If the pressure on the piston is doubled, the volume of the gas decreases by one-half. The gas molecules, now confined in a smaller volume, collide with the walls of the container twice as often and their pressure once again equals that of the piston.
Explanation:
There are 2 significant figures. All numbers in a whole number are significant.