Following chemical reaction is involved upon titration of Ca(OH)2 with HCl,
Ca(OH)2 + 2HCl ↔ CaCL2 + 2H2O
Above is an example of acid-base titration to generate salt and water. Here, H+ ions of acid (HCl) combines with OH- (ions) of base [Ca(OH)2] to generated H2O
Given,
concentration of HCl = 0.0199 M
Total volume of HCl consumed during titration = 16.08 mL = 16.08 X 10^(-3) L
∴, number of moles of H+ consumed = Molarity X Vol. of HCl (in L)
= 0.0199 X 16.08 X 10^(-3)
= 3.1999 X 10^-4 mol
Thus, total number of moles of [OH-] ions present initial = 3.1999 X 10-4 mol
So, initial conc. [OH-] ion = ![\frac{number of moles of [OH-]}{volume of solution (L)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bnumber%20of%20moles%20of%20%5BOH-%5D%7D%7Bvolume%20of%20solution%20%28L%29%7D%20)
=

= 0.03199 M
Answer:
For any given isotope, the sum of the numbers of protons and neutrons in the nucleus is called the mass number. This is because each proton and each neutron weigh one atomic mass unit. By adding together the number of protons and neutrons and multiplying by 1, you can calculate the mass of the atom.
solution:
This iron oxide mineral commonly has a reddish color and consistently has red streaks. this streaks is hematite.
I believe KI is not a a binary molecule.
Your welcome
Answer:
Equilibrium concentrations of the gases are



Explanation:
We are given that for the equilibrium

Temperature, 
Initial concentration of



We have to find the equilibrium concentration of gases.
After certain time
2x number of moles of reactant reduced and form product
Concentration of



At equilibrium
Equilibrium constant
![K_c=\frac{product}{Reactant}=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7Bproduct%7D%7BReactant%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
Substitute the values



By solving we get

Now, equilibrium concentration of gases


