Answer:
6. O₂ + Cu —> CuO
7. H₂ + Fe₂O₃ —> H₂O + Fe
8. O₂ + H₂ — > H₂O
9. H₂S + NaOH —> Na₂S + H₂O
10. Al + HCl —> H₂ + AlCl₃
Explanation:
6. Oxygen gas react with solid copper metal to form copper(II) oxide
Oxygen gas => O₂
Copper => Cu
copper(II) oxide => CuO
The equation is:
O₂ + Cu —> CuO
7. hydrogen gas and iron(III) oxide powder react to form liquid water and solid iron power
hydrogen gas => H₂
Iron(III) oxide => Fe₂O₃
Water => H₂O
Iron => Fe
The equation is:
H₂ + Fe₂O₃ —> H₂O + Fe
8. Oxygen gas react with hydrogen gas to form liquid water
Oxygen gas => O₂
hydrogen gas => H₂
Water => H₂O
The equation is:
O₂ + H₂ — > H₂O
9. Hydrogen sulphide gas is bubbled through a sodium hydroxide solution to produce sodium sulphide and liquid water
hydrogen sulphide => H₂S
sodium hydroxide => NaOH
Sodium sulphide => Na₂S
Water => H₂O
The equation is:
H₂S + NaOH —> Na₂S + H₂O
10. Hydrogen gas and aluminum chloride solutions are produced when solid aluminum react with hydrochloric acid
Aluminum => Al
Hydrochloric acid => HCl
hydrogen gas => H₂
Aluminum chloride => AlCl₃
The equation is:
Al + HCl —> H₂ + AlCl₃
Answer:
Impacts on Ocean Life
Coral Reefs.
Oysters, Mussels, Urchins and Starfish.
Zooplankton.
Plants and Algae.
Fish.
Explanation:
Answer :
The basic rules for naming of hydrocarbons are :
First select the longest possible carbon chain.
The longest possible carbon chain should include the carbons of double or triple bonds.
The naming of alkane is done by adding the suffix -ane, alkene by adding the suffix -ene, alkyne by adding the suffix -yne.
The numbering is done in such a way that first carbon of double or triple bond gets the lowest number.
The carbon atoms of the double or triple bond get the preference over the other substituents present in the parent chain.
If two or more similar alkyl groups are present in a compound, the prefixes di-, tri-, tetra- and so on are used to specify the number of times of the alkyl groups in the chain.
Answer:
Ethylene glycol
Explanation:
Solubility results when there is some kind of interaction between the solute and its solvent. In the case of ethylene glycol, it could form intermolecular hydrogen bonds with ethanol and is hence miscible with ethanol in all proportions.
According to Law of conservation of matter," matter can neither be created nor destroyed but is conserved and remains constant over time'.
In above picture let suppose the Blue balls represent N₂ molecule and White balls represent H₂ molecules.
So, left picture represent reactants,
2 N₂ + 6 H₂
And , right picture represent products,
4 NH₃
So, there are 4 N atoms and 12 Hydrogen atoms in reactants and 4 N atom and 12 Hydrogen atoms in products. Means the mass of elements is conserved. The overall reactions is as follow,
2 N₂ + 6 H₂ → 4 NH₃
Result:
Yes! This reaction follow Law of conservation of Matter.