To know if an equation is balanced you need to check and see how much of each molecule is on either side of the arrow. Right now you have 1-Ca, 2-H, 2-Cl on the left side of the arrow and 1-Ca, 2-Cl, and 2-H on the right side too. Because all the molecules are equal on both sides this means that the equation is balanced. So in front of the CaCl2 there is an assumed coefficient of 1. The answer is 1.
The balanced reaction is 2KClO3 --> 2KCl + 3O2
We first divide the 400.0 g KClO3 by the molar mass of 122.55 g/mol to get 3.26 mol KClO3. Next, we use the coefficients: 3.26 mol KClO3 * (3 mol O2 / 2 mol KClO3) = 4.896 mol O2. Multiplying this by the molar mass of 32 g/mol gives 156.67 g O2.
Percent yield = 115.0 g / 156.67 g = 0.734 = 73.40%
Its oxidation number increases. When an atom loses electrons, there are now more protons then electrons so its oxidation number increases.
Hope this helps
Taking into account the ideal gas law, the pressure is 2.52 atm.
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The pressure, P, the temperature, T, and the volume, V, of an ideal gas are related by a simple formula called the ideal gas law. This equation relates the three variables if the amount of substance, number of moles n, remains constant. The universal constant of ideal gases R has the same value for all gaseous substances. The numerical value of R will depend on the units in which the other properties are worked.
P×V = n×R×T
In this case, you know:
- P=?
- V= 500 L
- n= 52.1 moles
- R= 0.082

- T= 22 C= 295 K (being 0 C=273 K)
Replacing in the ideal gas law:
P×500 L = 52.1 moles ×0.082
×295 K
Solving:
P= (52.1 moles ×0.082
×295 K)÷ 500 L
<u><em>P= 2.52 atm</em></u>
Finally, the pressure is 2.52 atm.
Learn more about ideal gas law: